



# Volume

## Processamento de Imagens Orbitais

Alexandre Rosa dos Santos Fernando Coelho Eugenio Vicente Paulo Soares Mauricio Alves Moreira Carlos Antonio Alvares Soares Ribeiro Kelly de Oliveira Barros



www.mundogeomatica.com.br

### **Alexandre Rosa dos Santos**

Professor Associado do Programa de Pós-graduação em Ciências Florestais da UFES Departamento de Engenharia Rural do Centro de Ciências Agrárias da UFES Bolsista de Produtividade em Pesquisa do CNPq - Nível 2

#### Fernando Coelho Eugenio

Engenheiro Florestal, Doutorando do Programa de Pós-graduação em Ciências Florestais do Centro de Ciências Agrárias da UFES

#### **Vicente Paulo Soares**

Professor Associado do Programa de Pós-graduação em Ciência Florestal da UFV Departamento de Engenharia Florestal da UFV Bolsista de Produtividade em Pesquisa do CNPq - Nível 2

#### **Mauricio Alves Moreira**

Professor Titular do Programa de Pós-graduação em Sensoriamento Remoto do INPE Divisão de Sensoriamento Remoto do INPE – DSR-OBT Pesquisador Titular do INPE

#### **Carlos Antonio Alvares Soares Ribeiro**

Professor Associado do Programa de Pós-graduação em Ciência Florestal da UFV Departamento de Engenharia Florestal da UFV Bolsista de Produtividade em Pesquisa do CNPq - Nível 2

#### Kelly de Oliveira Barros

Geógrafa, Mestra em Ciência Florestal e Doutoranda do Programa de Pós-graduação em Ciência Florestal da UFV

## SENSORIAMENTO REMOTO NO ARCGIS 10.2.2 passo a passo

## Processamento de Imagens Orbitais

## **VOLUME 1**

Alegre – ES CAUFES 2014

#### Sensoriamento Remoto no ArcGIS 10.2.2 PASSO A PASSO Processamento de Imagens Orbitais Volume 1

Copyright © 2014, Dr. Alexandre Rosa dos Santos

#### Capa

Thiago de Oliveira Thuler

#### Produção Gráfica - Equipe de Pesquisa FAPES Processo 61901857-13

Alexandre Rosa dos Santos – Pesquisador Principal Aureo Banhos dos Santos – Pesquisador Principal Greiciane Gaburro Paneto – Pesquisador Principal Charles Gladstone Duca Soares – Pesquisador Principal Lucas Mendes Barreto – Bolsista AT-NM / FAPES Raphael Lima Dalfi – Bolsista AT-NM / FAPES Lucas Damásio Evangelista Reis – Bolsista ICT / Fapes Ingridh Medeiros Simões - Bolsista ICT Fapes

#### Revisão Ortográfica

Lara Carlette Thiengo

#### Contato

http://www.mundogeomatica.com.br e-mail: mundogeomatica@yahoo.com.br Tel.: (28) 3552 8988 ou (28) 99926-0262

TODOS OS DIREITOS RESERVADOS - O livro é gratuito podendo ser impresso. A violação dos direitos autorais (Lei no 9.610/98) é crime (art. 184 do Código Penal). Depósito legal na Biblioteca Nacional, conforme Decreto no 1.825, de 20/12/1907. Os autores são seus professores, respeite-os, sempre citando seus nomes em possíveis publicações.

| (Biblic | Dados Internacionais de Catalogação-na-publicação (CIP)<br>oteca Setorial de Ciências Agrárias, Universidade Federal do Espírito Santo, ES, Brasil)                                                                                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S478    | Sensoriamento Remoto no ArcGIS 10.2.2 passo a passo: processamento de<br>imagens orbitais [recurso eletrônico] / Alexandre Rosa dos Santos<br>[et al.] – Alegre, ES: CAUFES, 2014.<br>107 p. : il.                                                                          |
|         | Inclui bibliografia.<br>Sistema requerido: Adobe Acrobat Reader.<br>Modo de acesso: World Wide Web: http://www.mundogeomatica.com.br/Livro<br>SR102.htm.>.                                                                                                                  |
|         | ISBN: 978-85-61890-50-6                                                                                                                                                                                                                                                     |
|         | <ol> <li>Sensoriamento remoto. 2. Satélites artificiais em sensoriamento remoto. 3.</li> <li>Sensoriamento remoto – Imagens. 4. Sistemas de informação geográfica. I. Santos,<br/>Alexandre Rosa, 1974 II. Título. III. Título: processamento inicial de imagens</li> </ol> |

CDU: 528.8

orbitais.

## CITAÇÃO E REFERÊNCIA DO LIVRO

#### ΝΟ ΤΕΧΤΟ

Santos et al. (2014) ou (SANTOS et al., 2014)

#### NA LISTA DE REFERÊNCIAS

SANTOS, A. R. et al. Sensoriamento Remoto no ArcGIS 10.2.2 Passo a Passo: Processamento de Imagens Orbitais – Volume 1. Alegre: CAUFES, 2014.

## CITAÇÃO E REFERÊNCIA DO CONJUNTO DE FERRAMENTAS SR – LANDSAT 8

#### ΝΟ ΤΕΧΤΟ

Santos et al. (2014) ou (SANTOS et al., 2014)

#### NA LISTA DE REFERÊNCIAS

SANTOS, A. R. et al. **SR – LANDSAT 8: Conjunto de Ferramentas para o Processamento de Imagens Orbitais do Satélite LANDSAT 8.** Desenvolvido em parceria pelos autores da UFES, UFV e INPE. Disponível em: <a href="http://www.mundogeomatica.com.br/livroSR102.htm">http://www.mundogeomatica.com.br/livroSR102.htm</a>.

## DEDICATÓRIA

Nós, autores, dedicamos este livro aos familiares que sempre acreditaram em nossos trabalhos.

### AGRADECIMENTOS

À Universidade Federal do Espírito Santo (UFES), em especial ao Departamento de Engenharia Rural e ao Programa de Pós-graduação em Ciências Florestais.

Á Fundação de Amparo à Pesquisa do Espírito Santo (FAPES), pelo apoio financeiro destinado ao projeto de pesquisa (Processo Nº 61901857-13) intitulado "Modelo Preditivo de Impactos das Estradas sobre a Biodiversidade: Avaliação dos Impactos da Rodovia BR-101 sobre a Fauna de Vertebrados Silvestres da Rebio de Sooretama, no Estado do Espírito Santo" à possibilitou a elaboração deste livro.

À todos os conveniados do Sistema Integrado de Bases Georreferenciadas do Estado do Espírito Santo (GEOBASES), ao United States Geological Survey (USGS) e Earth Remote Sensing Data Analysis Center (ERSDAC) que disponibilizaram o banco de dados espaciais para a elaboração dos exercícios deste livro.

Em especial, a todos que, direta ou indiretamente, contribuíram para o desenvolvimento deste livro.

#### COLABORADORES

**CCA-UFES** - Centro de Ciências Agrárias da Universidade Federal do Espírito Santo. **FAPES** – Fundação de Amparo à Pesquisa do Espírito Santo.

**PPGCF-UFES** - Programa de Pós-graduação em Ciências Florestais da UFES.

ERU/CCA-UFES - Departamento de Engenharia Rural do CCA-UFES.

UFV - Universidade Federal de Viçosa.

**INPE** - Instituto Nacional de Pesquisas Espaciais.

III \_

## REFLEXÃO

#### SATÉLITE

Fim de tarde. No céu plúmbeo A Lua baça Paira Muito cosmograficamente Satélite.

Desmetaforizada, Desmitificada, Despojada do velho segredo de melancolia, Não é agora o golfão de cismas, O astro dos loucos e dos enamorados. Mas tão-somente Satélite.

Ah Lua deste fim de tarde, Demissionária de atribuições românticas, Sem show para as disponibilidades sentimentais! Fatigado de mais-valia, Gosto de ti assim: Coisa em si, - Satélite.

Manuel Bandeira

## FABRICANTE

Produto: ArcGIS® 10.2.2(ArcInfo®)

Fabricante: www.esri.com

#### **Representante no Brasil**

Rua Itororó, 555 - Vila Bandeirantes São José dos Campos - SP CEP: 12216-440 Tel.: (12) 3946-8933 Fax: (12) 3946-8945 Site: www.img.com.br

**Nota:** Todas as marcas e imagens de hardware, software e outros, utilizados e/ou mencionados nesta obra, são propriedades de seus respectivos fabricantes e/ou criadores. Os autores se responsabilizam totalmente pelo conteúdo descrito no livro. O objetivo dos autores é disponibilizar para os usuários do aplicativo computacional ArcGIS® 10.2.2 (ArcInfo®) um material de referência para suas aplicações práticas e teóricas relacionadas com os dados espaciais, contribuindo de forma positiva com o fabricante do ArcGIS® 10.2.2 (Empresa ESRI), pois, dessa forma, mais usuários irão se interessar e adquirir o produto.

## **REQUISITOS BÁSICOS DE HARDWARE E SOFTWARE**

#### Requisitos de Hardware:

- Capacidade de memória RAM: 1 Gb (recomendado acima de 2 Gb).
- Capacidade de disco rígido: acima de 160 Gb.
- Placa de vídeo: SuperVGA (recomendado placa de vídeo que permita trabalhar com animações gráficas tridimensionais).
- Monitor: colorido de 14 pol. (recomendado 15 ou maior).

#### Requisitos de Software:

- Sistema operacional Windows® XP ou versões superiores.
- Microsoft Office 2010® ou versões superiores.
- ArcGIS® 10.2.2 completo com todas as extensões habilitadas em idioma inglês.

## APRESENTAÇÃO

Atualmente, as características técnicas do ArcGIS®10.2.2 são consideradas imprescindíveis, possibilitando a coleta, processamento, edição, armazenamento e gerência de dados espaciais, assim como a exploração, análise geográfica e a visualização destes dados.

Um dos pontos fortes do ArcGIS®10.2.2 é a sua diversidade de aplicações em diferentes áreas do conhecimento, apresentando um "caráter" multidisciplinar, possibilitando o uso de ferramentas específicas para cada atividade a ser executada, sendo dispensável a utilização de outros aplicativos computacionais concorrentes.

Foi pensando no grande potencial do ArcGIS®10.2.2 que este livro foi elaborado, tendo como principal objetivo ensinar, passo a passo, como elaborar o processamento de imagens orbitais no ArcGIS® 10.2.2, utilizando-se de uma linguagem clara e interpretável.

Este livro foi idealizado a partir da necessidade de se criar um material prático, inteligente, objetivo, rápido e de fácil entendimento a todos os leitores.

Ao apresentar exercícios aplicáveis para dados espaciais, este livro tem por objetivo atingir diferentes faixas de usuários do mercado porque não se limita a ensinar comandos ou funções complexas. O livro apresenta ao leitor, claramente, o tipo de atividade que ele irá desenvolver e explica passo a passo todos os procedimentos necessários para a sua execução.

Alegre, 07 de Julho de 2014.

Prof. Dr. Alexandre Rosa dos Santos

Organizador

V

## ÍNDICE ANALÍTICO

| CITA      | ÇÃO E REFERÊNCIA DO LIVRO                                                                                                                    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| CITA      | ÇÃO E REFERÊNCIA DO CONJUNTO DE FERRAMENTAS SR – LANDSAT 8                                                                                   |
| DEDI      | CATÓRIA                                                                                                                                      |
| AGRA      | DECIMENTOS                                                                                                                                   |
| COLA      | BORADORES                                                                                                                                    |
| REFL      | EXÃO IV                                                                                                                                      |
| FABR      | ICANTEIV                                                                                                                                     |
| REQL      | IISITOS BÁSICOS DE HARDWARE E SOFTWARE V                                                                                                     |
| APRE      | SENTAÇÃOV                                                                                                                                    |
| ÍNDIC     | E ANALÍTICOVI                                                                                                                                |
|           | E DE FIGURASVI                                                                                                                               |
| INDIC     | E DE TABELAS VIII                                                                                                                            |
| 1.        |                                                                                                                                              |
| 2.        | AQUISIÇÃO E PREPARO DA BASE DE DADOS A SER UTILIZADA PARARESOLUÇÃO DE EXERCÍCIOS12                                                           |
| 3.        | CARACTERÍSTICAS DAS IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8 12                                                                                |
|           | 3.1. AQUISIÇÃO GRATUITA DE IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8<br>NO SÍTIO DO UNITED STATES GEOLOGICAL SURVEY (USGS)                      |
| 4.        | CARACTERÍSTICAS DAS IMAGENS ORBITAIS DO GDEM (GLOBAL DIGITAL<br>ELEVATION MODEL) ORIUNDOS DOS SENSORES DO ASTER DO SATÉLITE<br>TERRA         |
|           | 4.1. AQUISIÇÃO GRATUITA DE IMAGENS ASTER GDEM NO SÍTIO WEB DO<br>EARTH REMOTE SENSING DATA ANALYSIS CENTER (ERSDAC)                          |
| 5.        | PREPARAÇÃO DA BASE DE DADOS 24                                                                                                               |
| 6.        | REPROJEÇÃO DE IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8                                                                                         |
| 7.        | VISUALIZAÇÃO DAS CONSTANTES NECESSÁRIAS PARA O<br>REDIMENSIONAMENTO DE IMAGENS DO SATÉLITE LANDSAT 8                                         |
| 8.        | CONVERSÃO DE NÚMEROS DIGITAIS (ND) PARA RADIÂNCIA ESPECTRAL NO TOPO DA ATMOSFERA (L $\lambda$ ) DE IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8 42 |
| 9.        | CONVERSÃO DE RADIÂNCIA NO TOPO DA ATMOSFERA (L $\lambda$ ) PARA<br>REFLECTÂNCIA PLANETÁRIA NO TOPO DA ATMOSFERA ( $\rho\lambda$ )            |
| 10.       | CONVERSÃO DE RADIÂNCIA NO TOPO DA ATMOSFERA $(L\lambda)$ PARA<br>TEMPERATURA DE BRILHO EM KELVIN (K) E GRAUS CELSIUS ( $\Omega$ ) 51         |
|           | 10.1. REPRESENTAÇÃO GRÁFICA DA VARIAÇÃO DA TEMPERATURA DE BRILHO<br>DAS BANDAS DO SENSOR THERMAL INFRARED SENSOR (TIRS) 57                   |
| 11.       | COMPOSIÇÕES COLORIDAS DE IMAGENS ORBITAIS DO SATÉLITE LANDSAT                                                                                |
| 12.       | ESPACIALIZAÇÃO TRIDIMENSIONAL DE UMA IMAGEM DE COMPOSIÇÃO<br>COLORIDA REPRESENTATIVA DA ANÁLISE DA VEGETAÇÃO (COMP_654) SOBRE                |
| 13        | UTILIZAÇÃO E VALIDAÇÃO DO SR – LANDSAT 8: CONJUNTO DE FERRAMENTAS                                                                            |
| 14        |                                                                                                                                              |
| 14.<br>15 | EXERCÍCIO PRÁTICO DE APRENDIZAGEM                                                                                                            |
| 16.       | REFERENCIAS BIBLIOGRÁFICAS                                                                                                                   |
|           |                                                                                                                                              |

## ÍNDICE DE FIGURAS

| Representação gráfica da variação da temperatura de brilho das bandas TIRS 10 (A) e TIRS 11 (B) em °C                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Composições coloridas de bandas espectrais do satélite Landsat 8                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Espacialização tridimensional de uma imagem de composição colorida representativa da análise da vegetação (Comp_654) sobre uma imagem ASTER GDEM em diferentes pontos de observação | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SR – LANDSAT 8: Conjunto de Ferramentas para o Processamento de Imagens<br>Orbitais do Satélite LANDSAT 8                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Unidade C: após a extração da pasta Livro_SR_ArcGIS_10_2                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sensores do satélite Terra, mostrando em destaque os sensores do ASTER                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Composições coloridas de bandas espectrais do satélite Landsat 8                                                                                                                    | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Espacialização tridimensional da imagem de composição colorida representativa da análise da vegetação (Comp_654) sobre uma imagem ASTER GDEM                                        | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Espacialização tridimensional de uma imagem de composição colorida representativa da análise da vegetação (Comp_654) sobre uma imagem ASTER GDEM em diferentes pontos de observação | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                     | Representação gráfica da variação da temperatura de brilho das bandas TIRS 10 (A)<br>e TIRS 11 (B) em °C<br>Composições coloridas de bandas espectrais do satélite Landsat 8<br>Espacialização tridimensional de uma imagem de composição colorida representativa<br>da análise da vegetação (Comp_654) sobre uma imagem ASTER GDEM em<br>diferentes pontos de observação<br>SR – LANDSAT 8: Conjunto de Ferramentas para o Processamento de Imagens<br>Orbitais do Satélite LANDSAT 8<br>Unidade C: após a extração da pasta Livro_SR_ArcGIS_10_2<br>Sensores do satélite Terra, mostrando em destaque os sensores do ASTER<br>Composições coloridas de bandas espectrais do satélite Landsat 8<br>Espacialização tridimensional da imagem de composição colorida representativa da<br>análise da vegetação (Comp_654) sobre uma imagem ASTER GDEM<br>Espacialização tridimensional de uma imagem de composição colorida representativa da<br>análise da vegetação (Comp_654) sobre uma imagem ASTER GDEM |

## ÍNDICE DE TABELAS

| Tabela 1.  | Bandas espectrais do satélite Landsat 8                                                                                                                                                             | 13  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tabela 2.  | Valores do fator multiplicativo reescalonado da radiância para a banda específica (ML) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01_MTL.txt)                             | 40  |
| Tabela 3.  | Valores do fator aditivo reescalonado da radiância para a banda específica (A <sub>L</sub> ) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01_MTL.txt)                       | 40  |
| Tabela 4.  | Valores do fator multiplicativo reescalonado da reflectância para a banda específica (M $\rho$ ) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01_MTL.txt)                   | 41  |
| Tabela 5.  | Valores do fator aditivo reescalonado da reflectância para a banda específica ( $A\rho$ ) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01_MTL.txt)                          | 41  |
| Tabela 6.  | Valores do ângulo de elevação solar (SUN_ELEVATION) da imagem e das constantes térmicas das imagens TIRS (K1 e K2) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01_MTL.txt) | 41  |
| Tabela 7.  | Validação da ferramenta REPROJEÇÃO DE IMAGENS do conjunto de ferramentas SR – LANDSAT 8                                                                                                             | 90  |
| Tabela 8.  | Validação da ferramenta RADIÂNCIA ESPECTRAL NO TOPO DA ATMOSFERA do conjunto de ferramentas SR – LANDSAT 8                                                                                          | 96  |
| Tabela 9.  | Validação da ferramenta TEMPERATURA DE BRILHO NO SENSOR do conjunto de ferramentas SR – LANDSAT 8                                                                                                   | 100 |
| Tabela 10. | Validação da ferramenta TEMPERATURA DE BRILHO NO SENSOR do conjunto de ferramentas SR – LANDSAT 8                                                                                                   | 102 |
| Tabela 11. | Validação da ferramenta COMPOSIÇÕES COLORIDAS DE IMAGENS do conjunto de ferramentas SR – LANDSAT 8                                                                                                  | 106 |

#### 1. INTRODUÇÃO

Neste livro, você irá utilizar todo o potencial do aplicativo computacional ArcGIS® 10.2.2 for desktop, nível avançado (Advanced) (ESRI, 2014), incluindo suas principais ferramentas básicas e comandos com o intuito de realizar o processamento inicial das imagens orbitais.

Os assuntos abordados neste capítulo serão:

- Aquisição e preparação da base de dados a ser utilizada para resolução de exercícios;
- Características das imagens orbitais do satélite Landsat 8;
  - Aquisição gratuita de imagens orbitais do satélite Landsat 8 no sítio do United States Geological Survey (USGS);
- Características das imagens orbitais do GDEM (Global Digital Elevation Model) oriundos dos sensores do ASTER do satélite TERRA;
  - Aquisição gratuita de imagens ASTER GDEM no sítio web do Earth Remote Sensing Data Analysis Center (ERSDAC);
- Preparação da base de dados;
- Reprojeção de imagens orbitais do satélite Landsat 8;
- Visualização das constantes necessárias para o redimensionamento de imagens do satélite Landsat 8;
- Conversão de Números Digitais (ND) para radiância espectral no topo da atmosfera (L<sup>1</sup>) de imagens orbitais do satélite Landsat 8;
- Conversão de radiância no topo da atmosfera (Lλ) para reflectância planetária no topo da atmosfera (ρλ);
- Conversão de radiância no topo da atmosfera (Lλ) para temperatura de brilho em Kelvin (K) e graus Celsius (℃) (Figura 1);
  - Representação gráfica da variação da temperatura de brilho das bandas do sensor thermal infrared sensor (TIRS);



Figura 1. Representação gráfica da variação da temperatura de brilho das bandas TIRS 10 (A) e TIRS 11 (B) em °C.

• Composições coloridas de imagens orbitais do sensor OLI do satélite Landsat 8 (Figura 2);





Comp\_754: OLI7(R) OLI5(G) OLI4(B): infravermelho de ondas curtas.



Comp\_564: OLI5(R) OLI6(G) OLI4(B): avaliação da terra e água.



Comp\_765: OLI7(R) OLI6(G) OLI5(B): avaliação da penetração atmosférica.



**Comp\_543:** OLI5(R) OLI4(G) OLI3(B): infravermelho colorida para avaliação da vegetação.



Comp\_432: OLI4(R) OLI3(G) OLI2(B): cor natural.

Figura 2. Composições coloridas de imagens orbitais do sensor OLI do Landsat-8 satélite Landsat 8.

 Espacialização tridimensional de uma imagem de composição colorida representativa da análise da vegetação (Comp\_654) sobre uma imagem ASTER GDEM em diferentes pontos de observação (Figura 3); e



- Figura 3. Espacialização tridimensional de uma imagem de composição colorida representativa da análise da vegetação (Comp\_654) sobre uma imagem ASTER GDEM em diferentes pontos de observação.
- Utilização e validação do SR LANDSAT 8: Conjunto de Ferramentas para o Processamento de Imagens Orbitais do Satélite LANDSAT 8 (Figura 4).



Figura 4. SR – LANDSAT 8: Conjunto de Ferramentas para o Processamento de Imagens Orbitais do Satélite LANDSAT 8.

#### 2. AQUISIÇÃO E PREPARO DA BASE DE DADOS A SER UTILIZADA PARA RESOLUÇÃO DE EXERCÍCIOS

A base de dados "Livro\_SR\_ArcGIS\_10\_2.rar" necessária para a elaboração dos exercícios do livro deverá ser BAIXADA GRATUITAMENTE da home-page do MUNDO DA GEOMÁTICA que apresenta o seguinte endereço eletrônico: http://www.mundogeomatica.com.br. Nesta home-page, deve-se clicar sobre a figura do livro "Sensoriamento Remoto no ArcGIS 10.2.2 TOTAL: Processamento de Imagens Orbitais" indo para a home-page http://www.mundogeomatica.com.br/LivroSR102.htm.

A base de dados espaciais é referente ao quadrante representativo do município de Vitória, capital do estado do Espírito Santo, Brasil, obtida gratuitamente no sítio do United States Geological Survey (USGS, 2013) e do Earth Remote Sensing Data Analysis Center (ERSDAC, 2013) que apresentam, respectivamente, os seguintes endereços eletrônicos:

- http://earthexplorer.usgs.gov/
- http://gdem.ersdac.jspacesystems.or.jp/

Após ser baixada e salva para dentro da unidade C, esta deverá ser extraída para dentro da unidade C: de seu computador. A Figura 5 mostra como deverá ficar a unidade C: após a extração da pasta Livro\_SR\_ArcGIS\_10\_2.



Figura 5. Unidade C: após a extração da pasta Livro\_SR\_ArcGIS\_10\_2.

#### 3. CARACTERÍSTICAS DAS IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8

O Landsat 8 foi lançado no dia 11 de fevereiro de 2013 e começou a transmitir imagens no dia 18 de março, sendo que, apenas no dia 12 de abril, atingiu a sua órbita final a 705 km acima da Terra. É um satélite dos Estados Unidos da América que tem o objetivo de observar a Terra. É o oitavo da série de satélites do Programa Landsat e o sétimo a alcançar com sucesso a órbita terrestre. O United States Geological Survey (USGS) é o responsável por toda aquisição, armazenamento, processamento das imagens.

As principais características do Landsat 8 são:

- a) Tipo de órbita: heliosincrônica, ou seja, é uma órbita polar que segue o movimento do Sol;
- b) Resolução Temporal: 16 dias;
- c) Resolução Radiométrica: 12 bits (4096 tons de cinza), diferentemente dos 8 bits do Landsat 5 e 7 (256 tons de cinza). Em alguns aplicativos é necessário realizar a conversão radiométrica (Rescale) para 8 bits;
- d) Resolução espectral: 11 bandas espectrais (Tabela 1), apresentando as seguintes características individuais:

- Banda 1 (costeira / aerossol): esta banda é também denominada de ultra-azul. Este intervalo de comprimento de onda (0,43 0,45 μm) é bastante dispersado por partículas de aerossóis e partículas finas. Por isso sua aplicação é voltada para estudos de áreas costeiras, onde há muito material particulado fino em suspensão e para aerossóis na atmosfera como poeira e fumaça, podendo ser utilizado para estudos de qualidade do ar ou dispersão de poluentes;
- Bandas 2, 3 e 4 (azul, verde e vermelho): são as bandas usadas para composição em cor natural;
- Banda 5 (infravermelho próximo): mais indicada para estudos de vegetação e utilização de índices de vegetação como o NDVI;
- Bandas 6 e 7 (infra vermelho de ondas curtas SWIR1 e SWIR2): são particularmente úteis para distinguir terra molhada da terra seca e estudos geológicos;
- Banda 8 (pancromática): basicamente utilizadas para fazer fusões com outras composições de bandas com o objetivo de melhorar a interpretação visual;
- Bandas 9 (Cirrus): projetada para detecção de nuvens altas denominadas de Cirrus. Por meio da fusão com outras bandas espectrais pode-se melhorar a interpretação visual; e
- Bandas 10 e 11 (infravermelho termal TIRS1 e TIRS2): usadas para estudar a variação da temperatura da superfície do planeta.

| BANDAS<br>ESPECTRAIS | NOME DAS BANDAS ESPECTRAIS                                  | COMPRIMENTO<br>DE ONDA<br>( µm ) | RESOLUÇÃO<br>ESPACIAL<br>(m) |
|----------------------|-------------------------------------------------------------|----------------------------------|------------------------------|
| OLI1                 | Costeira / aerosol                                          | 0,43 - 0,45                      | 30                           |
| OLI2                 | Azul                                                        | 0,45 – 0,51                      | 30                           |
| OLI3                 | Verde                                                       | 0,53 – 0,59                      | 30                           |
| OLI4                 | Vermelho                                                    | 0,64 – 0,67                      | 30                           |
| OLI5                 | Infravermelho próximo (Near InfraRed - NIR)                 | 0,85 - 0,88                      | 30                           |
| OLI6                 | Infravermelho de ondas curtas (Short Wave InfraRed - SWIR1) | 1,57 – 1,65                      | 30                           |
| OLI7                 | Infravermelho de ondas curtas (Short Wave InfraRed - SWIR2) | 2,11 – 2,29                      | 30                           |
| OLI8                 | Pancromática                                                | 0,50 - 0,68                      | 15                           |
| OLI9                 | Cirrus                                                      | 1,36 – 1,38                      | 30                           |
| TIRS10               | Infravermelho termal (Termal InfraRed Sensor - TIRS1)       | 10,60 – 11,19                    | 100                          |
| TIRS11               | Infravermelho termal (Termal InfraRed Sensor – TIRS2)       | 11,50 – 12,51                    | 100                          |

Tabela 1. Bandas espectrais do satélite Landsat 8

Fonte: Adaptada de USGS (2013).

- e) Projeção das Imagens: UTM, Datum WGS 1984;
- f) Reprojeção: as imagens Landsat 8 devem ser sempre reprojetadas para a projeção do local onde será realizado o estudo. Como exemplo, neste livro, as imagens referentes ao quadrante representativo do município de Vitória, ES, que encontra-se na base de dados, é disponibilizada pelo USGS na Projeção/Datum WGS1984 UTM Zone 24 N, devendo ser reprojetada para a Projeção/Datum WGS1984 UTM Zone 24 S;
- g) Formato de entrega das imagens: GeoTIFF;

- h) Instrumentos imageadores: o Landsat 8 apresenta dois instrumentos imageadores denominados de:
- <u>Operacional Terra Imager (OLI)</u>: consiste de nove bandas multiespectrais (bandas de 1 a 7 e 9, todas com resolução espacial de 30 metros, além da banda 8, denominada pancromática, com resolução espacial de 15 metros); e
- <u>Thermal InfraRed Sensor (TIRS)</u>: consistem de duas bandas do infravermelho termal com resolução espacial de 100 metros (banda 10 e 11);
- i) Tamanho aproximado da cena: de 170 km (Norte-Sul) por 183 km (Leste-Oeste); e
- j) Novas composições de bandas: o Landsat 8 foi desenvolvido com a possibilidade de realização de novas composições de bandas. Como exemplo, neste capítulo, serão apresentadas, passo a passo, as etapas necessárias para a composição colorida das seguintes imagens orbitais:
- OLI4(R) OLI3(G) OLI2(B): cor natural;
- OLI7(R) OLI6(G) OLI4(B): falsa cor para avaliação da urbanização;
- OLI5(R) OLI4(G) OLI3(B): infravermelho colorida para avaliação da vegetação;
- OLI6(R) OLI5(G) OLI2(B): avaliação da agricultura;
- OLI7(R) OLI6(G) OLI5(B): avaliação da penetração atmosférica;
- OLI5(R) OLI6(G) OLI2(B): avaliação do vigor da vegetação;
- OLI5(R) OLI6(G) OLI4(B): avaliação da terra e água;
- OLI7(R) OLI5(G) OLI3(B): avaliação natural com remoção atmosférica;
- OLI7(R) OLI5(G) OLI4(B): infravermelho de ondas curtas; e
- OLI6(R) OLI5(G) OLI4(B): análise da vegetação.

#### 3.1. AQUISIÇÃO GRATUITA DE IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8 NO SÍTIO DO UNITED STATES GEOLOGICAL SURVEY (USGS)

Neste tópico serão apresentadas as etapas necessárias para aquisição de imagens orbitais do satélite Landsat 8 no sítio do United States Geological Survey (USGS, 2013).

- 1. Em seu **navegador padrão de Internet** digite o endereço eletrônico http://earthexplorer.usgs.gov/;
- 2. Aperte a tecla **Enter** de seu teclado. Você será direcionado para o sítio do United States Geological Survey;





- Caso você não esteja registrado no sítio do USGS, será necessário realizar o registro clicando sobre o link Register;
- 4. Na janela de registro, você deverá preencher os campos representativos das seguintes etapas: **1. Login**; **2. User Affiliation**; **3. Address**; e **4. Confirmation**.



- 5. Na guia Search Crietria, clique sobre a opção Decimal;
- 6. Clique sobre a opção Add Coordinate;
- Na caixa de diálogo Add New Coordinate, digite as coordenadas geográficas (décimos de graus) -20.3 e -40.3 para as caixas de entrada Latitude e Longitude, respectivamente.
- 8. Clique sobre o botão Add;
- 9. Na caixa de entrada **Search from** e **to**, digite as datas representativas de **05/01/2013** (01 de maio de 2013) e **11/20/2013** (20 de novembro de 2013), respectivamente.
- 10. Clique sobre a opção Data Sets para ir para a próxima guia;
- 11. Na guia Data Sets, expanda Landsat Archive e marque a opção L8 OLI/TIRS;
- 12. Clique na guia Additional Criteria;
- 13. Para o critério Data Type Level 1, selecione a opção AlI;
- 14. Para o critério Data Type Level ORp, selecione a opção All;
- 15. Para o critério Cloud Cover, selecione a opção Less than 20%;
- Clique na guia Results. Veja como resultado que foi disponibilizada várias imagens do satélite Landsat 8, com destaque para a imagem adquirida em 16 de maio de 2013 (16-MAY-13);
- 17. Clique sobre o ícone Show Browse Overlay <sup>15</sup> e verifique que a imagem será disponibilizada sobre o mapa;
- 18. Clique sobre o ícone Show Metadata and Browse 22 e verifique na janela Full Display of LC82150742013136LGN01 os atributos representativos do arquivo a ser adquirido;
- 19. Feche a janela Full Display of LC82150742013136LGN01;

15















## Data Set Click here to export your results > ✓ L8 OLI/TIRS 18 ▼ a Entity ID: LCs r 150742013136LGN01 ▼ Coordinates: 20.22961-39.66888 Acquisition D te: 16-MAY-13 Path: 215 Row: 74 Test of the second sec

- 20. Clique sobre o ícone Download Options 📥 ;
- 21. Na caixa de diálogo **Download Options**, selecione a opção **Level 1 GeoTIFF Data Product (729.2 MB)**;
- 22. Clique sobre o botão Select Download Option;
- 23. Na caixa de diálogo Download Scene, clique sobre o botão Download; e
- 24. Finalmente, na caixa de diálogo **Salvar como**, você poderá escolher um diretório de trabalho (pasta) em seu computador para baixar o arquivo compactado em formato **.tar.gz**. No entanto, clique sobre o botão **Cancelar**.

#### OBSERVAÇÃO

Foi necessário clicar sobre o botão **Cancelar** no tópico **23** (anterior) visto que as imagens a serem utilizadas neste livro representam este mesmo arquivo e já foram obtidas e cortadas, sendo referentes ao quadrante representativo do município de Vitória, ES que faz parte do banco de dados já adicionado anteriormente na unidade c de seu computador (C:\Livro\_SR\_ArcGIS\_10\_2).









#### 4. CARACTERÍSTICAS DAS IMAGENS ORBITAIS DO GDEM (GLOBAL DIGITAL ELEVATION MODEL) ORIUNDOS DOS SENSORES DO ASTER DO SATÉLITE TERRA

Um exemplo típico de Modelo Digital de Elevação (MDE) para medição de variáveis topográficas é o Global Digital Elevation Model (GDEM), oriundo de dados dos sensores do Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) do satélite Terra (FERRARI, 2012).

O ASTER, segundo Liu (2007), é um dos cinco sensores transportados pelo satélite Terra, lançado pela National Aeronautics and Space Administration (NASA) em dezembro de 1999, recobrindo uma área de 60 x 60 km do terreno (Figura 6).

Figura 6. Sensores do satélite Terra, mostrando em destaque os sensores do ASTER. Fonte: Ferrari (2012), adaptada de Liu (2007).

O sensor ASTER possui três subsistemas que possibilitam a variação da resolução espacial, conforme a faixa de comprimento de onda: (1) VNIR, resolução espacial de 15 metros, em 3 bandas do espectro visível e infravermelho próximo; (2) SWIR, 30 metros em 6 bandas do infravermelho de ondas curtas; e (3) TIR, 90 metros em 5 bandas do infravermelho termal (FERRARI, 2012).

De acordo com informações disponíveis no sítio web do Earth Remote Sensing Data Analysis Center (http://www.gdem.aster.ersdac.or.jp), o ASTER GDEM é fruto de uma ação conjunta da NASA e o ministério janonês Japan Ministry of Economy Trade and Industry, sendo disponibilizado gratuitamente por este sítio web com resolução espacial de 30 m, referenciada a ondulação geoidal EGM96 e ao datum e elipsóide de referência WGS 84 (FERRARI, 2012).

ASTER GDEM foi criado a partir do processamento e correlacionamento de 1,3 milhões de arquivos de cenas ASTER, cobrindo a superfície terrestre entre as latitudes de 83°N e 83°S. Ao todo, o mosaico possui 22.895 imagens de 1° por 1°, disponibilizadas no formato GeoTIFF (Geographic Tagged Image File Format), com 16 bits de resolução radiométrica (1 m de altitude para cada número digital). Pixels sem dados possuem níveis digitais especiais de -9999, enquanto que os corpos d'água marítimos recebem valor de 0 m (RODRIGUES et. al. 2010).

#### 4.1. AQUISIÇÃO GRATUITA DE IMAGENS ASTER GDEM NO SÍTIO WEB DO EARTH REMOTE SENSING DATA ANALYSIS CENTER (ERSDAC)

Neste tópico serão apresentadas as etapas necessárias para aquisição de imagens ASTER GDEM no sítio do Earth Remote Sensing Data Analysis Center.

- 1. Em seu **navegador padrão de Internet** digite o endereço eletrônico http://gdem.ersdac.jspacesystems.or.jp/;
- 2. Aperte a tecla **Enter** de seu teclado. Você será direcionado para o sítio do Earth Remote Sensing Data Analysis Center;



- Caso você não esteja registrado, será necessário realizar o registro clicando sobre o link Register & Modification;
- Na janela de registro, preencha todos os campos necessários para o registro avançando para outras telas para confirmar o registro;
- 5. Após o registro, clique em Search;
- 6. Clique no botão Select tiles by coordinates;
- 7. No primeiro dropdown da opção Latitude, selecione S;
- 8. No primeiro campo de entrada da Latitude, digite 20;
- 9. No segundo dropdown da opção Latitude, selecione S;
- 10. No segundo campo de entrada da Latitude, digite 21;
- 11. No primeiro dropdown da opção Longitude, selecione W;
- 12. No primeiro campo de entrada da Longitude, digite 41;
- 13. No segundo dropdown da opção Longitude, selecione W;
- 14. No segundo campo de entrada da Longitude, digite 40;
- 15. Clique sobre o botão OK e aceite fixar a região (Fix the region);
- 16. Clique sobre o botão Grid;
- 17. Clique sobre o botão Next;



| → C 🗋 gdem.ersdac.jsp                                                                                                                                            | acesystems.or.jp/register.jsp                                                                                                                  | \$    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Aplicativos 🚺 Sites Sugeridos 📲                                                                                                                                  | Customize Links 📋 Galeria do Web Slice 📋 Importado do IE 🧰 Importado do Firefox                                                                |       |
|                                                                                                                                                                  | NEN 4                                                                                                                                          |       |
| ASTER GL                                                                                                                                                         |                                                                                                                                                | 日本語   |
|                                                                                                                                                                  |                                                                                                                                                |       |
| Register                                                                                                                                                         |                                                                                                                                                |       |
| <ul> <li>Enter your user information belo<br/>clicking [Next] button, current s</li> </ul>                                                                       | w. Input of the items with * is compulsory. After completing the entry, click [Next] button.<br>screen moves to entry confirmation screen.     | After |
| After clicking [Cancel] button,                                                                                                                                  | current screen moves to previous page.                                                                                                         |       |
|                                                                                                                                                                  |                                                                                                                                                |       |
| Enterna la franchia                                                                                                                                              |                                                                                                                                                |       |
| Account                                                                                                                                                          |                                                                                                                                                |       |
| Username *                                                                                                                                                       |                                                                                                                                                |       |
| Pageword *                                                                                                                                                       |                                                                                                                                                |       |
| Tusaworu -                                                                                                                                                       |                                                                                                                                                |       |
| Password(reenter) *                                                                                                                                              |                                                                                                                                                |       |
|                                                                                                                                                                  | Username should have 8-32 alphanumeric characters or symbols.<br>The first character should be alphabet and no space at Username and Password. |       |
| Individual Information                                                                                                                                           |                                                                                                                                                |       |
|                                                                                                                                                                  |                                                                                                                                                |       |
|                                                                                                                                                                  | 🖲 Organization 🔘 Personal                                                                                                                      |       |
| First Name *                                                                                                                                                     | Organization Personal                                                                                                                          |       |
| First Name *<br>Middle Name                                                                                                                                      | Organization     Personal                                                                                                                      |       |
| First Name *<br>Middle Name<br>Last Name *                                                                                                                       | Organization     Personal                                                                                                                      |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *                                                                                                          | Organization     Personal     - Select -                                                                                                       |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *                                                                                       | Organization     Personal     Select -                                                                                                         |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Organization Name *                                                                | Organization     Personal     - Select -                                                                                                       |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Organization Name *<br>Address *                                                   | Organization     Personal     - Select -     -                                                                                                 |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Organization Name *<br>Address *<br>Phone Number *                                 | Organization     Personal     -     Select -     .                                                                                             |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Organization Name *<br>Address *<br>Phone Number *                                 | Organization     Personal                                                                                                                      |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Organization Name *<br>Address *<br>Phone Number *<br>Click [Next] button.         | Organization     Personal                                                                                                                      |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Organization Name *<br>Address *<br>Phone Number *<br>Click [Next] button.         |                                                                                                                                                |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Organization Name *<br>Address *<br>Phone Number *<br>Click [Next] button.         |                                                                                                                                                |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Organization Name *<br>Address *<br>Phone Number *<br>Click [Next] button.         | Organization     Personal     .     Select     .     Cancel     Next                                                                           |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Organization Name *<br>Address *<br>Phone Number *<br><b>Click [Next] button</b> . | Organization Personal   - Select -     - Select -     • Cancel   Next                                                                          |       |
| First Name *<br>Middle Name<br>Last Name *<br>Country *<br>Email Address *<br>Oreanization Name *<br>Address *<br>Phone Number *<br>Click [Next] button.         | Organization Personal - Select - Cancel Next                                                                                                   |       |





- 18. Marque o arquivo ASTGTM2\_S21W041.zip;
- 19. Clique sobre o botão Next;
- 20. No dropdown da opção Select purpose, selecione Agriculture;
- 21. Clique sobre o botão Agree;

| Tile list                      | Tile count is 1 (chec                | ked to delete 0) |
|--------------------------------|--------------------------------------|------------------|
| Selected tiles for downloading | location<br>\$21 - \$20, Woll - Wold |                  |
| V AGTGTM2_321W0412IP           | 321 320, W041 W040                   |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
| 10                             |                                      |                  |
| 10                             |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      |                  |
|                                |                                      | 19               |
|                                |                                      | 19               |
|                                |                                      | 19               |
| Delete unchecked entry         |                                      | 19               |

| ASTER GD            |                                                                                                                                      | 0                 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ⇒ C                 | gdem.ersdac.jspacesystems.or.jp/agreement.jsp                                                                                        | 5                 |
| Aplicativos         | 🚺 Sites Sugeridos 📲 Customize Links 📋 Galeria do Web Slice 🦳 Importado do IE 🛅 Importado do Firefox                                  |                   |
| 4ST                 |                                                                                                                                      | sh 日本語            |
|                     | Logged in by mundogeo                                                                                                                | matica <u>log</u> |
|                     |                                                                                                                                      |                   |
| Agreente            |                                                                                                                                      |                   |
| Before (<br>+bo "AS | downloading ASTER GDEM tiles, firstly choose a category from the pulldown menu below. Then, you are required to<br>TED CDEM Dallas?" | o agree to        |
| the As              | TER GDEM POlicy                                                                                                                      |                   |
|                     |                                                                                                                                      |                   |
|                     |                                                                                                                                      |                   |
| Sol                 | act nurmes                                                                                                                           |                   |
| 001                 |                                                                                                                                      |                   |
| Ag                  | riculture                                                                                                                            |                   |
| _                   |                                                                                                                                      |                   |
|                     |                                                                                                                                      | _                 |
|                     | ASTER GDEM Policy                                                                                                                    | ()                |
| I agr               | ee to redistribu 🗩 ASTER GDEM only to individuals within my organization or project of intended use or in res                        | ponse             |
| to d                | isasters in supp 💜 the GEO Disaster Theme. (Required)                                                                                |                   |
|                     | 21                                                                                                                                   |                   |
| Whe                 | n presenting or publishing ASTER GDEM data, I agree to include "ASTER GDEM is a product of METI at $44$ SA."                         | ×                 |
| -                   |                                                                                                                                      |                   |
| Clie                | sk [Agree] button                                                                                                                    |                   |
|                     |                                                                                                                                      |                   |
|                     | Cancel Agree                                                                                                                         |                   |
|                     |                                                                                                                                      |                   |
| 1                   |                                                                                                                                      |                   |
|                     | m                                                                                                                                    |                   |

#### 22. Novamente marque o arquivo ASTGTM2\_S21W041.zip;

#### 23. Clique sobre o botão Download; e

 Finalmente, na caixa de diálogo Salvar como, você poderá escolher um diretório de trabalho (pasta) em seu computador para baixar o arquivo compactado em formato .zip. No entanto, clique sobre o botão Cancelar.

#### OBSERVAÇÃO

Foi necessário clicar sobre o botão **Cancelar** no tópico **23** (anterior) visto que as imagens a serem utilizadas neste livro representam este mesmo arquivo e já foram obtidas e cortadas, sendo referentes ao quadrante representativo do município de Vitória, ES que faz parte do banco de dados já adicionado anteriormente na unidade c de seu computador (C:\Livro\_SR\_ArcGIS\_10\_2).

|       | guermersaue,jsp       | acesystems.or.jp/download.jsp               |                                         |                        |
|-------|-----------------------|---------------------------------------------|-----------------------------------------|------------------------|
| ativo | s 🚺 Sites Sugeridos 📫 | Customize Links 📋 Galeria do Web Slice 🧰 Ir | nportado do IE  🛅 Importado do Firefox  |                        |
|       |                       |                                             | Tile count is 1 (Lune download count is | <ul> <li>1)</li> </ul> |
|       | download file name    | location                                    | The count is in (cump download count is | 5 1/                   |
|       | readme                |                                             | Download                                |                        |
|       | ASTGTM2_S21W041.zip   | S21 - S20, W041 - W040                      | Download                                |                        |
|       |                       |                                             |                                         |                        |
| 22    |                       |                                             | 23                                      |                        |

| Pire Favoritos     Imagens   Imagens  < | Organizar 👻 N                                                                                                                                     | ova pasta              |            |                                                                                                                     | !≡ •                                                                                                                                                                                                                                   | 0                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Windows         10/30/2013 2:13 PM           Windows         10/30/2013 2:13 PM           Nome:         Tiles_201311201346.zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Favoritos     Favoritos     Bibliotecas     Documentos     Imagens     Músicas     Wideos     Computador     Musicador     Go (C:)     Documentos |                        | III        | Nome<br>PROJETO_ALIXANDRE<br>Python25<br>Python26<br>Python27<br>riscos<br>TabWin<br>UHE_Rosal<br>USuários<br>Video | Data de modificaç<br>10/19/2013 8:49 PM<br>3/6/2011 1:39 PM<br>4/19/2011 10:02 PM<br>8/13/2013 10:40 AM<br>9/20/2011 7:22 PM<br>9/9/2012 12:54 PM<br>11/20/2013 8:05 AM<br>8/1/2013 9:59 AM<br>5/23/2013 1:32 PM<br>11/19/2013 5:29 PM | T P<br>P P<br>P P<br>P P<br>P |
| Nome: Tiles_201311201346.zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Meus Sites no                                                                                                                                     | MSN                    | <b>+</b> 1 | Uindows                                                                                                             | 10/30/2013 2:13 PM                                                                                                                                                                                                                     | P                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nome:                                                                                                                                             | Tiles_201311201346.zip | )          |                                                                                                                     | 0                                                                                                                                                                                                                                      | 52                            |
| Tipo: Arquivo ZIP do WinRAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tipo:                                                                                                                                             | Arquivo ZIP do WinRA   | R          |                                                                                                                     | 21                                                                                                                                                                                                                                     | - 23                          |

#### 5. PREPARAÇÃO DA BASE DE DADOS

Nesta etapa, inicialmente você deverá preparar a base de dados necessária para as atividades futuras de processamento de imagens.

#### INICIANDO O ARCMAP™

O ArcMap<sup>™</sup> possibilita explorar dados geográficos e criar mapas para exibição. Para iniciar o ArcMap<sup>™</sup>, você deve seguir os seguintes passos:

- 1. Clique no botão Iniciar da barra de estado do Windows;
- 2. Clique sobre o nome Todos os Programas;
- 3. Clique sobre o nome ArcGIS; e
- 4. Clique sobre o nome ArcMap 10.2.



#### ABRINDO UM PROJETO EM BRANCO

A primeira vez em que você inicia o ArcMap<sup>™</sup>, a caixa de diálogo inicial irá aparecer. A caixa de diálogo inicial oferece várias opções por começar uma sessão no ArcMap<sup>™</sup>. Para esta etapa deve-se iniciar o programa com um projeto em branco.

1. Clique no botão Cancel.



#### ABRINDO ARQUIVOS VETORIAIS DO BANCO DE DADOS

- 1. Clique sobre o botão Add Data 👲 na barra de ferramentas Standard;
- 2. Clique na seta amarela 😉 e vá para o subdiretório C:\Livro\_SR\_ArcGIS\_10\_2; e
- 3. Na caixa de diálogo Add Data, selecione os seguintes arquivos matriciais e vetoriais:
  - Municipios\_Quadrante.shp; e
  - Quadrante.shp.
- 4. Clique no botão Add.

| Look in:       Livro_SR_ArcGIS_10_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Add Data      |                         |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|-------------------------------|
| Exercicios       LC 2150742013136LGN01_86.TIF         ASTGTM2_S21W041_dem.tif       LC 2150742013136LGN01_87.TIF         LC 82150742013136LGN01_81.TIF       LC 82150742013136LGN01_88.TIF         LC 82150742013136LGN01_81.TIF       LC 82150742013136LGN01_88.TIF         LC 82150742013136LGN01_81.TIF       LC 82150742013136LGN01_80.TIF         LC 82150742013136LGN01_83.TIF       LC 82150742013136LGN01_BA.TIF         LC 82150742013136LGN01_85.TIF       Municipios_Quadrante.shp         Municipios_Quadrante.shp       3                                                                          | Look in: 🛅 L  | ivro_SR_ArcGIS_10_2     |                               |
| ASTGTM2_S21W041_dem.tif<br>LC82150742013136LGN01_B1.TIF<br>LC82150742013136LGN01_B1.TIF<br>LC82150742013136LGN01_B1.TIF<br>LC82150742013136LGN01_B2.TIF<br>LC82150742013136LGN01_B3.TIF<br>LC82150742013136LGN01_B3.TIF<br>LC82150742013136LGN01_B3.TIF<br>LC82150742013136LGN01_B3.TIF<br>LC82150742013136LGN01_B5.TIF<br>Municipios_Quadrante.shp<br>Municipios_Quadrante.shp<br>Municipios_Quadrante.shp<br>Municipios_Quadrante.shp<br>Municipios_Quadrante.shp<br>Municipios_Quadrante.shp<br>Municipios_Quadrante.shp<br>Municipios_Quadrante.shp<br>Municipios_Quadrante.shp<br>Municipios_Quadrante.shp | Exercicios    |                         | IC 82150742013136LGN01_B6.TIF |
| LC82150742013136LGN01_B1.TIF         LC82150742013136LGN01_B10.TIF         LC82150742013136LGN01_B10.TIF         LC82150742013136LGN01_B1.TIF         LC82150742013136LGN01_B2.TIF         LC82150742013136LGN01_B3.TIF         LC82150742013136LGN01_B3.TIF         LC82150742013136LGN01_B3.TIF         LC82150742013136LGN01_B3.TIF         LC82150742013136LGN01_B3.TIF         LC82150742013136LGN01_B3.TIF         Municipios_Quadrante.shp         Quadrante.shp         Municipios_Quadrante.shp         Add                                                                                            | ASTGTM2_S     | 21W041_dem.tif          | EC82150742013136LGN01_B7.TIF  |
| LC82150742013136LGN01_B10.TIF       LC82150742013136LGN01_B9.TIF         LC82150742013136LGN01_B1.TIF       LC82150742013136LGN01_BQA.TIF         LC82150742013136LGN01_B3.TIF       Municipios_Quadrante.shp         LC82150742013136LGN01_B3.TIF       Quadrante.shp         LC82150742013136LGN01_B5.TIF       Municipios_Quadrante.shp         Mame:       Municipios_Quadrante.shp; Quadrante.shp                                                                                                                                                                                                          | IC82150742    | 013136LGN01_B1.TIF      | 50742013136LGN01_B8.TIF       |
| LC82150742013136LGN01_B11.TIF       LC82150742013136LGN01_BQA.TIF         LC82150742013136LGN01_B2.TIF       LC82150742013136LGN01_MTL.btt         LC82150742013136LGN01_B3.TIF       Municipios_Quadrante.shp         LC82150742013136LGN01_B5.TIF       Quadrante.shp         Name:       Municipios_Quadrante.shp; Quadrante.shp                                                                                                                                                                                                                                                                             | EC82150742    | 013136LGN01_B10.TIF     | 50742013136LGN01_B9.TIF       |
| LC82150742013136LGN01_82.TIF       LC82150742013136LGN01_MTL.btt         LC82150742013136LGN01_B3.TIF       Municipios_Quadrante.shp         LC82150742013136LGN01_B5.TIF       Quadrante.shp         Name:       Municipios_Quadrante.shp; Quadrante.shp                                                                                                                                                                                                                                                                                                                                                       | EC82150742    | 013136LGN01_B11.TIF     | LC82150742013136LGN01_BQA.TIF |
| ILC82150742013136LGN01_B3.TIF       Image: Municipios_Quadrante.shp         ILC82150742013136LGN01_B4.TIF       Image: Quadrante.shp         ILC82150742013136LGN01_B5.TIF       Image: Quadrante.shp         Name:       Municipios_Quadrante.shp; Quadrante.shp                                                                                                                                                                                                                                                                                                                                               | EC82150742    | 013136LGN01_B2.TIF      | LC82150742013136LGN01_MTL.txt |
| ILC82150742013136LGN01_B4.TIF       Quadrante.shp         ILC82150742013136LGN01_B5.TIF         Name:       Municipios_Quadrante.shp; Quadrante.shp                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LC82150742    | 013136LGN01_B3.TIF      | Municipios_Quadrante.shp      |
| Mame:       Municipios_Quadrante.shp; Quadrante.shp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LC82150742    | 013136LGN01_B4.TIF      | Quadrante.shp                 |
| Name: Municipios_Quadrante.shp; Quadrante.shp 4 Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EC82150742    | 013136LGN01_B5.TIF      | -                             |
| Name: Municipios_Quadrante.shp; Quadrante.shp 4 Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                         |                               |
| Name: Municipios_Quadrante.shp; Quadrante.shp 4 Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             |                         |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Name:         | Municipios_Quadrante.s  | hp; Quadrante.shp 4 Add       |
| Show of type: Detected Lawers and Regults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Show of type: | Datasets Lawers and Re  | cancel                        |
| Cancer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | Datasets, Layers and Re |                               |

#### FORMATANDO AS LAYERS DA TABELA DE CONTEÚDO

- 1. Na **Tabela de Conteúdos**, clique sobre o **símbolo retangular** representativo do arquivo vetorial poligonal **Quadrante**;
- Na caixa de diálogo Symbol Selector, no dropdown da opção Fill Color (preenchimento de cor), selecione No Color (nenhuma cor);
- 3. No dropdown da opção Outline Width (espessura da linha de contorno), digite 2;
- 4. No dropdown da opção **Outline Color** (cor da linha de contorno), selecione a cor **Ultra Brue**;
- 5. Clique sobre o botão OK;



- 6. Novamente na **Tabela de Conteúdos**, clique sobre o **símbolo retangular** representativo do arquivo vetorial poligonal **Municipios\_Quadrante**;
- Na caixa de diálogo Symbol Selector, no dropdown da opção Fill Color (preenchimento de cor), selecione No Color (nenhuma cor);
- 8. No dropdown da opção Outline Width (espessura da linha de contorno), digite 2;
- No dropdown da opção Outline Color (cor da linha de contorno), selecione a cor Solar Yellow;
- 10. Clique sobre o botão OK;



- 11. Na **Tabela de Conteúdos**, dê um clique duplo sobre arquivo vetorial poligonal **Municipios\_Quadrante**;
- 12. Na caixa de diálogo Layer Properties, clique na guia Labels (rótulos);
- 13. Marque a opção Label features in this layer;
- 14. No dropdown da opção Label Field (campo do rótulo), selecione o campo MUNICIPIOS;
- 15. No dropdown da opção Font Size (tamanho da fonte), selecione o tamanho de fonte 22;
- 16. No dropdown da opção Font Color (cor da fonte), selecione a cor Solar Yellow;
- 17. Marque a opção **Bold** (negrito); e
- 18. Clique sobre o botão OK.



|          |             |               | 0.1               |                | 0.0            |                  | Labela   |                 | -    | LUTIN      |
|----------|-------------|---------------|-------------------|----------------|----------------|------------------|----------|-----------------|------|------------|
| ieneral  | Source      | Selection     | Display           | Symbology      | Fields         | Definition Query | Labels   | Joins & Relates | lime | HIML Popup |
| V Labe   | el features | in this layer | 8                 |                |                |                  |          |                 |      |            |
| Nathad   | 5           | [1-1-1        | -11 41 - 7        |                |                |                  |          |                 |      |            |
| w ethod  | 2           | Laber         | all the tea       | tures the sam  | e way.         |                  | 12       |                 |      |            |
|          |             |               |                   |                |                |                  |          |                 |      |            |
| fea      | tures will  | be labeled u  | ising the a       | ptions specifi | ed.            |                  |          |                 |      |            |
|          |             |               |                   |                |                |                  |          | 14              |      |            |
| Text     | t String -  |               |                   |                |                |                  |          | -               |      |            |
| Labe     | el Field:   | M             | JNICIPIO:         | S              |                |                  | -        | Expression      |      |            |
|          |             | Neros         | 19119-19119-19119 |                | 49 (9 49 (9 49 | <u></u>          | -        |                 |      |            |
| Text     | t Symbol    |               |                   |                |                |                  | W-       |                 |      |            |
|          |             |               |                   |                | O Ari          | al 🔻             | 22       | - 15            |      |            |
|          |             |               |                   |                |                |                  | 0        |                 |      |            |
|          |             |               |                   |                |                |                  | Syr      | NDOI            |      |            |
| Othe     | er Options  | 12            |                   |                |                | Pre-defi         | ned Labe | el Style        |      |            |
| <u>_</u> |             | 4 D           |                   | Cert           | Desc           |                  | 1.1      | 10-1            |      |            |
| 1        | Flacem      | ent Propertie | 25                | Scale          | Rang 1         | 6 L              | Labe     | el Styles       |      |            |
|          |             |               |                   |                |                |                  |          |                 |      |            |
|          |             |               |                   |                |                |                  |          |                 |      |            |
|          |             |               |                   |                |                |                  |          |                 |      |            |
|          |             |               |                   |                |                |                  |          |                 |      |            |
|          |             |               |                   |                |                |                  |          | 18              |      |            |
|          |             |               |                   |                |                |                  |          |                 |      |            |
|          |             |               |                   |                |                |                  | 8        |                 |      | 1.5        |
|          |             |               |                   |                |                |                  |          |                 |      |            |

#### ABRINDO ARQUIVOS MATRICIAIS DO BANCO DE DADOS

- 1. Clique sobre o botão Add Data 🔹 na barra de ferramentas Standard;
- 2. Clique na seta amarela 😉 e vá para o subdiretório C:\Livro\_SR\_ArcGIS\_10\_2;
- 3. Na caixa de diálogo Add Data, selecione os seguintes arquivos matriciais:
  - ASTGTM2\_S21W041\_dem.tif;
  - LC82150742013136LGN01\_B1.TIF;
  - LC82150742013136LGN01\_B10.TIF;
  - LC82150742013136LGN01\_B11.TIF;
  - LC82150742013136LGN01\_B2.TIF;
  - LC82150742013136LGN01\_B3.TIF;
  - LC82150742013136LGN01\_B4.TIF;
  - LC82150742013136LGN01\_B5.TIF;
  - LC82150742013136LGN01\_B6.TIF;
  - LC82150742013136LGN01\_B7.TIF;
  - LC82150742013136LGN01\_B8.TIF; e
  - LC82150742013136LGN01\_B9.TIF;
- 4. Clique no botão Add; e
- Na caixa de diálogo Create pyramids for LC82150742013136LGN01\_B8.TIF (1373 x 1096) clique sobre o botão No pois neste momento você ainda não irá reamostrar nenhuma imagem.

| Add Data                                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                                                                             | ×    |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Look in: 📔                                                                                                             | Livro_SR_ArcGIS_10_2                                                                                                                                                        | - 📤 2 🗟   🏢 -   🖆   🖆                                                                                                                                                                                                                       | 1) 🗳 |
| Exercicios ASTGTM2_ LC82150742 LC82150742 LC82150742 LC82150742 LC82150742 LC82150742 LC82150742 LC82150742 LC82150742 | 521W041_dem.tif<br>013136LGN01_B1.TIF<br>013136LGN01_B10.TIF<br>013136LGN01_B11.TIF<br>013136LGN01_B2.TIF<br>013136LGN01_B3.TIF<br>013136LGN01_B4.TIF<br>013136LGN01_B5.TIF | LC82150742013136LGN01_B6.TIF<br>LC82150742013136LGN01_B7.TIF<br>LC82150742013136LGN01_B8.TIF<br>LC82150742013136LGN01_B9.TIF<br>LC82150742013136LGN01_BQA.TIF<br>LC82150742013136LGN01_MTL.txt<br>Municipios_Quadrante.shp<br>Quadrante.shp | 3    |
| Name:                                                                                                                  | ASTGTM2_S21W041_de                                                                                                                                                          | em.tif; LC82150742013136LGN                                                                                                                                                                                                                 | bb   |
| Show of type:                                                                                                          | Datasets, Layers and Re                                                                                                                                                     | esults  Car                                                                                                                                                                                                                                 | ncel |

| Create pyramids for LC82150742013136LGN01                                                                                              | _B8.TIF (1373 x 1096) |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| This raster data source does not have pyramids or control of the pyramids.<br>Pyramids allow for rapid display at varying resolution 5 |                       |  |  |  |  |  |  |
| Pyramid building may take a few moments.<br>Would you like to create pyramins?                                                         |                       |  |  |  |  |  |  |
| About pyramids Yes                                                                                                                     | No Cancel             |  |  |  |  |  |  |
| Pyramid resampling technique                                                                                                           | Nearest Neighbor 👻    |  |  |  |  |  |  |
| Pyramid compression type                                                                                                               | Default 👻             |  |  |  |  |  |  |
| Compression quality                                                                                                                    | 75                    |  |  |  |  |  |  |
| Use my choice and do not show this dialog in t                                                                                         | he future.            |  |  |  |  |  |  |

ORDENANDO OS ARQUIVOS VETORIAIS E MATRICIAIS NA TABELA DE CONTEÚDO

- 1. Na Tabela de Conteúdos, clique sobre o arquivo vetorial Quadrante. Este deverá ficar com a cor azul;
- 2. Arraste este arquivo para o inicio da Tabela de Conteúdos para que este fique posicionado antes do arquivo vetorial Municipios\_Quadrante; e
- Repita os passo 1 e 2 para os outros arquivos matriciais para que ao final você tenha o seguinte ordenamento de cima para baixo:
  - Quadrante.shp;
  - Municipios\_Quadrante.shp;
  - LC82150742013136LGN01\_B1.TIF;
  - LC82150742013136LGN01\_B2.TIF;
  - LC82150742013136LGN01\_B3.TIF;
  - LC82150742013136LGN01\_B4.TIF;
  - LC82150742013136LGN01\_B5.TIF;
  - LC82150742013136LGN01\_B6.TIF;
  - LC82150742013136LGN01 B7.TIF;
  - LC82150742013136LGN01 B8.TIF;
  - LC82150742013136LGN01 B9.TIF;
  - LC82150742013136LGN01\_B10.TIF;
  - LC82150742013136LGN01\_B11.TIF; e
  - ASTGTM2 S21W041 dem.tif;



#### RENOMEANDO A ARMAÇÃO DE DADOS NA TABELA DE CONTEÚDO

- Dê apenas um clique sobre o nome Layers da armação de dados e espere 2 segundos, dando um segundo clique. Observe que o nome Layers ficará disposto para ser renomeado; e
- 2. Digite o novo nome intitulado Processamentos\_Iniciais\_Imagens.



#### SALVANDO O PROJETO EM FORMATO .MXD

- 1. No menu File, clique na opção Save as para salvar seu mapa;
- Na caixa de diálogo Save as, clique na seta amarela e vá para o subdiretório C:\Livro\_SR\_ArcGIS\_10\_2;
- 3. Digite o nome **Processamento\_Inicial\_Imagens\_Orbitais** dentro da caixa de entrada **Nome do arquivo**; e
- 4. Clique no botão Salvar.

|              |                                         |                  | Q Salvar como |                |                                                          |                 |              | ×                  |
|--------------|-----------------------------------------|------------------|---------------|----------------|----------------------------------------------------------|-----------------|--------------|--------------------|
|              |                                         |                  | Salvar em:    | 📕 Livro_SR_A   | voGIS_10_2                                               | - G 🕽 🖻 🖽 -     | ·   🟠        |                    |
|              |                                         |                  | (Pa)          | Nome           | *                                                        | Data            |              | Tipo               |
| Q Ur<br>File | ntitled - ArcMap<br>Edit View Bookmarks | Insert Sele      | Locais        | Le Exercicios  |                                                          | 11/20/          | 2013 7:46 AM | Parqu              |
|              | New<br>Open                             | Ctrl+N<br>Ctrl+O | Área de       | •              | m                                                        |                 |              |                    |
|              | Save Save As                            | Ctrl+S           | Trabalho      | Nome:<br>Tipo: | Processamento_Inicial_Imagens<br>ArcMap Document (*.mxd) | s. Orbitais mod | ••••         | Salvar<br>Cancelar |

Veja abaixo o resultado final da preparação da base de dados.



#### 6. REPROJEÇÃO DE IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8

As imagens Landsat 8 devem ser sempre reprojetadas para a projeção do local onde será realizado o estudo. Como exemplo, neste capítulo, as imagens referentes ao quadrante representativo do município de Vitória, ES, é disponibilizada pelo USGS na Projeção/Datum WGS1984 UTM Zone 24 N, devendo ser reprojetada para a Projeção/Datum WGS1984 UTM Zone 24 S.

- 1. Clique sobre o botão ArcToolbox 🔊 na barra de ferramentas Standard;
- 2. Na caixa de diálogo ArcToolbox, expanda a opção Data Management Tools;
- 3. Expanda a opção Projections and Transformations;
- 4. Expanda a opção Raster;
- 5. Clique com o **botão direito do mouse** sobre a ferramenta **Project Raster** e, na janela de menu rápido, clique sobre a opção **Batch** (Lote);



- 6. Mantenha pressionada a tecla Shift do teclado e selecione as seguintes imagens:
  - LC82150742013136LGN01\_B1.TIF;
  - LC82150742013136LGN01\_B2.TIF;
  - LC82150742013136LGN01\_B3.TIF;
  - LC82150742013136LGN01\_B4.TIF;
  - LC82150742013136LGN01\_B5.TIF;
  - LC82150742013136LGN01\_B6.TIF;
  - LC82150742013136LGN01\_B7.TIF;
  - LC82150742013136LGN01\_B8.TIF;
  - LC82150742013136LGN01\_B9.TIF;
  - LC82150742013136LGN01\_B10.TIF e;
  - LC82150742013136LGN01\_B11.TIF;
- 7. Arraste todas as 11 imagens para dentro da caixa de entrada Input Raster da caixa de diálogo Project Raster;



Veja na figura abaixo que todas as 11 imagens foram inseridas dentro da caixa de entrada Input Raster.

Os únicos campos a serem preenchidos na caixa de diálogo Project Raster serão:

- a) Campo Output Raster Dataset; e
- b) Campo Output Coordinate System.

#### Sensoriamento Remoto no ArcGIS 10.2.2 Passo a Passo: Processamento Inicial de Imagens Orbitais

|    | Input Raster                  | Output Raster Dataset | Output Coordinate System |           |
|----|-------------------------------|-----------------------|--------------------------|-----------|
| 1  | LC82150742013136LGN01_B1.TIF  |                       |                          | -         |
| 2  | LC82150742013136LGN01_B2.TIF  |                       |                          |           |
| 3  | LC82150742013136LGN01_B3.TIF  |                       |                          | X         |
| 4  | LC82150742013136LGN01_B4.TIF  |                       |                          |           |
| 5  | LC82150742013136LGN01_B5.TIF  |                       |                          |           |
| 6  | LC82150742013136LGN01_B6.TIF  | VEJA O                |                          |           |
| 7  | LC82150742013136LGN01_B7.TIF  | RESULTAD              |                          |           |
| 8  | LC82150742013136LGN01_B8.TIF  |                       |                          | +         |
| 9  | LC82150742013136LGN01_B9.TIF  |                       |                          | $\square$ |
| 10 | LC82150742013136LGN01_B10.TIF |                       |                          |           |
| 11 | LC82150742013136LGN01_B11.TIF |                       |                          |           |
|    |                               |                       |                          |           |

|    | Input Raster                  | Output Raster Dataset | Output Coordinate System                | Resampling Technique | Output Cell Size | Geographic Transformation | Registration Point | Input Coordinate System |
|----|-------------------------------|-----------------------|-----------------------------------------|----------------------|------------------|---------------------------|--------------------|-------------------------|
| 1  | LC82150742013136LGN01_B1.TIF  |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 2  | LC82150742013136LGN01_B2.TIF  |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 3  | LC82150742013136LGN01_B3.TIF  |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 4  | LC82150742013136LGN01_B4.TIF  |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 5  | LC82150742013136LGN01_B5.TIF  |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 6  | LC82150742013136LGN01_B6.TIF  |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 7  | LC82150742013136LGN01_B7.TIF  |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 8  | LC82150742013136LGN01_B8.TIF  |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 9  | LC82150742013136LGN01_B9.TIF  |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 10 | LC82150742013136LGN01_B10.TIF |                       |                                         | NEAREST              |                  |                           |                    |                         |
| 11 | LC82150742013136LGN01_B11.TIF |                       | Y A A A A A A A A A A A A A A A A A A A | NEAREST              |                  |                           |                    |                         |
|    |                               | CAMPOS A<br>PREENO    | A SEREM<br>SHIDOS                       |                      |                  |                           |                    |                         |

- 8. Dê um clique duplo sobre a primeira linha (ou clique com botão direito do mouse e, na janela de menu rápido, clique em **Open**) do campo **Output Raster Dataset**;
- Na caixa de diálogo Project Raster: 1 vá para o diretório C:\Livro\_SR\_ArcGIS\_10\_2 e digite OLI\_1;
- 10. Clique sobre o botão OK;
- 11. Clique com o **botão direito do mouse** sobre a primeira linha do campo **Output Raster Dataset** e, na janela de menu rápido, clique sobre a opção **Fill**;

| 🔨 Proje | ct Raster                     |                       | - • •        |
|---------|-------------------------------|-----------------------|--------------|
|         |                               |                       | ^            |
|         | Input Raster                  | Output Raster Dataset |              |
| 1       | LC82150742013136LGN01_B1.TIF  |                       | - +          |
| 2       | LC82150742013136LGN01_B2.TIF  |                       |              |
| 3       | LC82150742013136LGN01_B3.TIF  |                       |              |
| 4       | LC82150742013136LGN01_B4.TIF  |                       |              |
| 5       | LC82150742013136LGN01_B5.TIF  | 8                     |              |
| 6       | LC82150742013136LGN01_B6.TIF  |                       |              |
| 7       | LC82150742013136LGN01_B7.TIF  |                       |              |
| 8       | LC82150742013136LGN01_B8.TIF  |                       | +            |
| 9       | LC82150742013136LGN01_B9.TIF  |                       |              |
| 10      | LC82150742013136LGN01_B10.TIF |                       |              |
| 11      | LC82150742013136LGN01_B11.TIF |                       |              |
|         |                               |                       |              |
| -       |                               |                       | P            |
|         | ОК                            | Cancel Environments   | Show Help >> |



| Project | Raster                        |                               | - • •        |
|---------|-------------------------------|-------------------------------|--------------|
|         | Input Raster                  | Output Raster Dataset         |              |
| 1       | LC82150742013136LGN01_B1.TIF  | C:\Livro SR ArcGIS 10 2\OLI 1 |              |
| 2       | LC82150742013136LGN01_B2.TIF  |                               | Open         |
| 3       | LC82150742013136LGN01_B3.TIF  |                               | Browse       |
| 4       | LC82150742013136LGN01_B4.TIF  |                               |              |
| 5       | LC82150742013136LGN01_B5.TIF  |                               | Fill — 11    |
| 6       | LC82150742013136LGN01_B6.TIF  |                               | Clear        |
| 7       | LC82150742013136LGN01_B7.TIF  |                               | Clear        |
| 8       | LC82150742013136LGN01_B8.TIF  |                               | Copy         |
| 9       | LC82150742013136LGN01_B9.TIF  |                               | p)           |
| 10      | LC82150742013136LGN01_B10.TIF |                               | Paste        |
| 11      | LC82150742013136LGN01_B11.TIF |                               | Delete       |
|         |                               |                               |              |
|         |                               |                               | •            |
|         | ОК                            | Cancel Environments           | Show Help >> |

12. Renomeia as saídas das novas imagens (linhas de 2 a 11) de C:\Livro\_SR\_ArcGIS\_10\_2\ OLI\_1 para:

| ANTES                         | DEPOIS DE RENOMEAR                    |
|-------------------------------|---------------------------------------|
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\ <b>OLI_2</b> |
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\OLI_3         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\ <b>OLI_4</b> |
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\OLI_5         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\ <b>OLI_6</b> |
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\OLI_7         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\ <b>OLI_8</b> |
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\ <b>OLI_9</b> |
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\TIRS_10       |
| C:\Livro_SR_ArcGIS_10_2\OLI_1 | C:\Livro_SR_ArcGIS_10_2\TIRS_11       |

| Project | Raster                        |                                 |        |         |
|---------|-------------------------------|---------------------------------|--------|---------|
|         |                               |                                 |        | ,       |
|         | Input Raster                  | Output Raster Dataset           |        |         |
| 1       | LC82150742013136LGN01_B1.TIF  | C:\Livro_SR_ArcGIS_10_2\OLI_1   | PRC    | +       |
| 2       | LC82150742013136LGN01_B2.TIF  | C:\Livro_SR_ArcGIS_10_2\OLI_2   | PRC    | _       |
| 3       | LC82150742013136LGN01_B3.TIF  | C:\Livro_SR_ArcGIS_10_2\OLI_3   | PRC    | ¥       |
| 4       | LC82150742013136LGN01_B4.TIF  | C:\Livro_SR_ArcGIS_10_2\OLI_4   | PRC    |         |
| 5       | LC82150742013136LGN01_B5.TIF  | C:\Livro_SR_ArcGIS_10_2\OLI_5   | PRC    |         |
| 6       | LC82150742013136LGN01_B6.TIF  | C:\Livro_SR_ArcGIS_10_2\OLI_6   | PRC    |         |
| 7       | LC82150742013136LGN01_B7.TIF  | C:\Livro_SR_ArcGIS_10_2\OLI_7   | PRC    | U       |
| 8       | LC82150742013136LGN01_B8.TIF  | C:\Livro_SR_ArcGIS_10_2\OLI_8   | PRC    | +       |
| 9       | LC82150742013136LGN01_B9.TIF  | C:\Livro_SR_ArcGIS_10_2\OLI_9   | PRC    |         |
| 10      | LC82150742013136LGN01_B10.TIF | C:\Livro_SR_ArcGIS_10_2\TIRS_10 | PRC    | 0       |
| 11      | LC82150742013136LGN01_B11.TIF | C:\Livro_SR_ArcGIS_10_2\TIRS_11 | PRC    |         |
|         | -                             |                                 |        |         |
|         |                               |                                 | •      |         |
|         | ОК                            | Cancel Environments             | Show H | Help >> |

- 13. Dê um clique duplo sobre a primeira linha do campo Output Coordinate System;
- 14. Clique sobre o botão Spatial Reference Properties 2;
- 15. Na caixa de diálogo **Spatial Reference Properties**, expanda a opção **Layers** e clique sobre o sistema de referencia **WGS\_1984\_UTM\_Zone\_24S**;
- 16. Clique sobre o botão OK;
- 17. Novamente clique sobre o botão OK;
- 18. Clique como **botão direito do mouse** sobre a primeira linha do campo **Output Coordinate System** e, na janela de menu rápido, clique sobre a opção Fill;
- 19. Clique sobre o botão **Check values** I para verificação prévia do processamento e adição automática das resoluções espaciais das respectivas imagens;
- 20. Clique sobre o botão OK;

| 🔨 Pro | oject | Raster                          |                          | - • ×        |
|-------|-------|---------------------------------|--------------------------|--------------|
|       |       |                                 |                          | *            |
|       |       | Output Raster Dataset           | Output Coordinate System |              |
|       | 1     | C:\Livro_SR_ArcGIS_10_2\OLI_1   |                          | NE/ 📥        |
|       | 2     | C:\Livro_SR_ArcGIS_10_2\OLI_2   |                          | NE/          |
|       | 3     | C:\Livro_SR_ArcGIS_10_2\OLI_3   |                          | NEA 🗙        |
|       | 4     | C:\Livro_SR_ArcGIS_10_2\OLI_4   | 13                       | NEA C        |
|       | 5     | C:\Livro_SR_ArcGIS_10_2\OLI_5   |                          | NEA          |
|       | 6     | C:\Livro_SR_ArcGIS_10_2\OLI_6   |                          | NEA 🛄        |
|       | 7     | C:\Livro_SR_ArcGIS_10_2\OLI_7   |                          | NEA          |
| 1     | 8     | C:\Livro_SR_ArcGIS_10_2\OLI_8   |                          | NEA 🔸        |
|       | 9     | C:\Livro_SR_ArcGIS_10_2\OLI_9   |                          | NE/          |
|       | 10    | C:\Livro_SR_ArcGIS_10_2\TIRS_10 |                          | NEA 🕐        |
|       | 11    | C:\Livro_SR_ArcGIS_10_2\TIRS_11 |                          | NE/          |
|       | •     |                                 |                          | ·            |
|       |       | ОК                              | Cancel Environments      | Show Help >> |
| Project Raster : 1                           | <b>—</b>               |
|----------------------------------------------|------------------------|
| <ul> <li>Output Coordinate System</li> </ul> | 14                     |
|                                              | OK Cancel Show Help >> |

| Spatial Reference Properties                                                                                                                                                                                                                                                             |                   | × |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|
| XY Coordinate System Z Coordinate System                                                                                                                                                                                                                                                 |                   |   |
| Type here to search                                                                                                                                                                                                                                                                      | - 🍳 🔊 🌐 - 🔆       |   |
| <ul> <li>♀ Favorites</li> <li>⊕ Geographic Coordinate Systems</li> <li>⊕ Projected Coordinate Systems</li> <li>⊕ Layers</li> <li>⊕ GCS_WGS_1984</li> <li>⊕ WGS_1984_UTM_zone_24N</li> <li>⊕ WGS_1984_UTM_Zone_24S</li> </ul>                                                             | 15                |   |
| Current coordinate system:<br>WGS_1984_UTM_Zone_24S<br>WKID: 32724 Authority: EPSG<br>Projection: Transverse_Mercator<br>False_Easting: 500000.0<br>False_Northing: 10000000.0<br>Central_Meridian: -39.0<br>Scale_Factor: 0.9996<br>Latitude_Of_Origin: 0.0<br>Linear Unit: Meter (1.0) | E                 |   |
|                                                                                                                                                                                                                                                                                          | 16<br>OK Cancelar |   |

| 🔨 Project Raster : 1                              |                        |
|---------------------------------------------------|------------------------|
| Output Coordinate System<br>WGS_1984_UTM_Zone_24S | 17                     |
|                                                   | OK Cancel Show Help >> |
|                                                   |                        |

#### Sensoriamento Remoto no ArcGIS 10.2.2 Passo a Passo: Processamento Inicial de Imagens Orbitais

|    | Output Raster Dataset           | Output Coordinate System      | Resampling Technic |
|----|---------------------------------|-------------------------------|--------------------|
| 1  | C:\Livro_SR_ArcGIS_10_2\OLI_1   | PROJCS[WGS_1984_UTM_Zone_24S] | NEAREST            |
| 2  | C:\Livro_SR_ArcGIS_10_2\OLI_2   |                               | Open               |
| 3  | C:\Livro_SR_ArcGIS_10_2\OLI_3   |                               | Browne             |
| 4  | C:\Livro_SR_ArcGIS_10_2\OLI_4   |                               | browsen            |
| 5  | C:\Livro_SR_ArcGIS_10_2\OLI_5   |                               | Fill 18            |
| 6  | C:\Livro_SR_ArcGIS_10_2\OLI_6   |                               |                    |
| 7  | C:\Livro_SR_ArcGIS_10_2\OLI_7   |                               | Clear              |
| 8  | C:\Livro_SR_ArcGIS_10_2\OLI_8   |                               | Caracity           |
| 9  | C:\Livro_SR_ArcGIS_10_2\OLI_9   |                               | Сору               |
| 10 | C:\Livro_SR_ArcGIS_10_2\TIRS_10 |                               | Paste 🕜            |
| 11 | C:\Livro_SR_ArcGIS_10_2\TIRS_11 |                               | Delete             |
|    |                                 |                               |                    |
|    |                                 |                               | ~                  |
| an |                                 |                               | . 🖌                |

|    | Output Raster Dataset           | Output Coordinate System       | Resampling Technic |         |
|----|---------------------------------|--------------------------------|--------------------|---------|
| 19 | C:\Livro_SR_ArcGIS_10_2\OLI_1   | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            | +       |
| 2  | C:\Livro_SR_ArcGIS_10_2\OLI_2   | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            |         |
| 3  | C:\Livro_SR_ArcGIS_10_2\OLI_3   | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            | X       |
| 4  | C:\Livro_SR_ArcGIS_10_2\OLI_4   | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            |         |
| 5  | C:\Livro_SR_ArcGIS_10_2\OLI_5   | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            |         |
| 6  | C:\Livro_SR_ArcGIS_10_2\OLI_6   | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            | 1       |
| 78 | C:\Livro_SR_ArcGIS_10_2\0LI_7   | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            | 1.      |
| 8  | C:\Livro_SR_ArcGIS_10_2\OLI_8   | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            | +       |
| 9  | C:\Livro_SR_ArcGIS_10_2\OLI_9   | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            | _       |
| 10 | C:\Livro_SR_ArcGIS_10_2\TIRS_10 | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            | 0       |
| 11 | C:\Livro_SR_ArcGIS_10_2\TIRS_11 | PROJCS['WGS_1984_UTM_Zone_24S' | NEAREST            | ( comes |
| 4  |                                 |                                | 19 ,               | -       |

- 21. Na Tabela de Conteúdos, **Mantenha pressionada a tecla Shift** do teclado e selecione as seguintes imagens:
  - LC82150742013136LGN01\_B1.TIF;
  - LC82150742013136LGN01\_B2.TIF;
  - LC82150742013136LGN01\_B3.TIF;
  - LC82150742013136LGN01\_B4.TIF;
  - LC82150742013136LGN01\_B5.TIF;
  - LC82150742013136LGN01\_B6.TIF;
  - LC82150742013136LGN01\_B7.TIF;
  - LC82150742013136LGN01\_B8.TIF;
  - LC82150742013136LGN01\_B9.TIF;
  - LC82150742013136LGN01\_B10.TIF; e
  - LC82150742013136LGN01\_B11.TIF.

- 22. Clique com o **botão direito do mouse** sobre **qualquer uma das imagens** já selecionadas e, na janela de menu rápido, clique sobre a opção **Remove**;
- 23. Finalmente a Tabela de Conteúdos deverá apresentar o seguinte ordenamento:
  - Quadrante;
  - Municipios\_Quadrante;
  - OLI\_1;
  - OLI\_2;
  - OLI\_3;
  - OLI\_4;
  - OLI\_5;
  - OLI\_6;
  - OLI\_7;
  - OLI\_8;
  - OLI\_9;
  - TIRS\_10;
  - TIRS\_11; e
  - ASTGTM2\_S21W041\_dem.tif;



Abaixo é apresentado o resultado final desta etapa.



## 7. VISUALIZAÇÃO DAS CONSTANTES NECESSÁRIAS PARA O REDIMENSIONAMENTO DE IMAGENS DO SATÉLITE LANDSAT 8

- 1. No Windows Explorer, dê um clique duplo sobre o arquivo LC82150742013136LG N01\_MTL.txt localizado dentro da pasta C:\Livro\_SR\_ArcGIS\_10\_2;
- 2. No **Bloco de notas**, visualize as informações referentes as imagens do satélite Landsat 8; e
- 3. Feche o Bloco de notas.

Com o intuito resumir e auxiliar mais rapidamente os processamentos a serem executados posteriormente, as principais constantes necessárias para o redimensionamento das imagens do satélite Landsat 8, extraídas do arquivo LC82150742013136LGN01\_MTL.txt são disponibilizadas nas Tabelas 2, 3, 4, 5 e 6.

| Computador + OS (C:) + L       | ivro_SR_ArcGIS_10_2 •                                                                                | ← ← Pesquisar L P |
|--------------------------------|------------------------------------------------------------------------------------------------------|-------------------|
| Organizar • Abrir • Imprimir   | aa<br>Email Gravar Nova pasta                                                                        | #= • 🔟 🔞          |
| info Intel Ivro SR ArcGIS 10 2 | Nome LC82150742013136LGN01_BQA.TFw                                                                   |                   |
| Log     Meus Sites     MSOCk-  | CC82150742013156CGN01_MTLtxt     ASTGTM2_S21W041_dem.tif.aux.xml     ASTGTM2_S21W041_dem.tif.aux.xml | -                 |



Tabela 2. Valores do fator multiplicativo reescalonado da radiância para a banda específica (ML) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01\_MTL.txt)

| <b>RADIANCE_MULT_BAND</b> = $M_L$ | VALOR      |
|-----------------------------------|------------|
| RADIANCE_MULT_BAND_1              | 0.012620   |
| RADIANCE_MULT_BAND_2              | 0.012869   |
| RADIANCE_MULT_BAND_3              | 0.011783   |
| RADIANCE_MULT_BAND_4              | 0.0099798  |
| RADIANCE_MULT_BAND_5              | 0.0060558  |
| RADIANCE_MULT_BAND_6              | 0.0015258  |
| RADIANCE_MULT_BAND_7              | 0.00049633 |
| RADIANCE_MULT_BAND_8              | 0.011242   |
| RADIANCE_MULT_BAND_9              | 0.0024886  |
| RADIANCE_MULT_BAND_10             | 0.00033420 |
| RADIANCE_MULT_BAND_11             | 0.00033420 |

Tabela 3. Valores do fator aditivo reescalonado da radiância para a banda específica (A<sub>L</sub>) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01\_MTL.txt)

| RADIANCE_ADD_BAND = A <sub>L</sub> | VALOR     |
|------------------------------------|-----------|
| RADIANCE_ADD_BAND_1                | -63.09797 |
| RADIANCE_ADD_BAND_2                | -64.34332 |
| RADIANCE_ADD_BAND_3                | -58.91678 |
| RADIANCE_ADD_BAND_4                | -49.89890 |
| RADIANCE_ADD_BAND_5                | -30.27921 |
| RADIANCE_ADD_BAND_6                | -7.62885  |
| RADIANCE_ADD_BAND_7                | -2.48165  |
| RADIANCE_ADD_BAND_8                | -56.20796 |
| RADIANCE_ADD_BAND_9                | -12.44298 |
| RADIANCE_ADD_BAND_10               | 0.10000   |
| RADIANCE_ADD_BAND_11               | 0.10000   |

Tabela 4. Valores do fator multiplicativo reescalonado da reflectância para a banda específica ( Mρ) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01\_MTL.txt)

| <b>REFLECTANCE_MULT_BAND =</b> $M\rho$ | VALOR   |
|----------------------------------------|---------|
| REFLECTANCE_MULT_BAND_1                | 0.00002 |
| REFLECTANCE_MULT_BAND_2                | 0.00002 |
| REFLECTANCE_MULT_BAND_3                | 0.00002 |
| REFLECTANCE_MULT_BAND_4                | 0.00002 |
| REFLECTANCE_MULT_BAND_5                | 0.00002 |
| REFLECTANCE_MULT_BAND_6                | 0.00002 |
| REFLECTANCE_MULT_BAND_7                | 0.00002 |
| REFLECTANCE_MULT_BAND_8                | 0.00002 |
| REFLECTANCE_MULT_BAND_9                | 0.00002 |

Tabela 5. Valores do fator aditivo reescalonado da reflectância para a banda específica (Aρ) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01\_MTL.txt)

| <b>REFLECTANCE_ADD_BAND =</b> $A\rho$ | VALOR |
|---------------------------------------|-------|
| REFLECTANCE_ADD_BAND_1                | -0.1  |
| REFLECTANCE_ADD_BAND_2                | -0.1  |
| REFLECTANCE_ADD_BAND_3                | -0.1  |
| REFLECTANCE_ADD_BAND_4                | -0.1  |
| REFLECTANCE_ADD_BAND_5                | -0.1  |
| REFLECTANCE_ADD_BAND_6                | -0.1  |
| REFLECTANCE_ADD_BAND_7                | -0.1  |
| REFLECTANCE_ADD_BAND_8                | -0.1  |
| REFLECTANCE_ADD_BAND_9                | -0.1  |

Tabela 6. Valores do ângulo de elevação solar (SUN\_ELEVATION) da imagem e das constantes térmicas das imagens TIRS (K1 e K2) disponibilizado no arquivo metadata das imagens (LC821507420131 36LGN01\_MTL.txt)

| ATRIBUTOS DA IMAGEM | VALOR       |
|---------------------|-------------|
| SUN_ELEVATION       | 41.74834737 |
| K1_CONSTANT_BAND_10 | 774.89      |
| K1_CONSTANT_BAND_11 | 480.89      |
| K2_CONSTANT_BAND_10 | 1321.08     |
| K2_CONSTANT_BAND_11 | 1201.14     |

# 8. CONVERSÃO DE NÚMEROS DIGITAIS (ND) PARA RADIÂNCIA ESPECTRAL NO TOPO DA ATMOSFERA ( $L_{\lambda}$ ) DE IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8

Todo sensor de observação da Terra mede a intensidade do fluxo radiante proveniente da sua superfície, a qual é denominada radiância. Essa radiância é costumeiramente denominada radiância aparente por incluir influência da atmosfera e de objetos vizinhos àquele que se está estudando. No próprio sensor, essa radiância aparente é convertida em Números Digitais escalonados em diferentes amplitudes, dependendo da resolução radiométrica do sensor.

Alguns estudos que envolvem a quantificação de propriedades geofísicas ou biofísicas exigem que se faça a caracterização espectral de objetos, o que não pode ser feito mediante o emprego de Números Digitais, que são na realidade proporcionais a valores da radiância aparente. Nesses casos, os Números Digitais devem ser convertidos para Fatores de reflectância de superfície. Essa operação exige normalmente duas etapas: a conversão da radiância aparente em fator de reflectância aparente e a posterior conversão do fator de reflectância aparente em fator de reflectância de superfície.

Atualmente os produtos oriundos do satélite Landsat 8 são disponibilizados pelo United States Geological Survey (USGS) em Números Digitais (Digital Number - DN) pelos instrumentos imageadores Operacional Terra Imager (OLI) e Thermal InfraRed Sensor (TIRS), podendo ser redimensionadas para as seguintes saídas de dados:

- Radiância espectral no topo da atmosfera  $(L_{\lambda})$ ;
- Reflectância exoatmosférica ou do topo da atmosfera ( $\rho\lambda$ ); e
- Temperatura de brilho em Kelvin (K) e graus celsius ( $\mathfrak{C}$ ).

### **OBSERVAÇÃO**

Nem sempre é necessário corrigir os efeitos da atmosfera. Por exemplo, no caso de mapeamento de áreas agrícolas, na maioria das vezes não se usa fazer fazer a correção dos efeitos atmosféricos. No entanto, quando se pretende realizar uma análise do comportamento espectral de uma cultura ao longo do ciclo aí sim é necessário fazer a correção dos efeitos atmosféricos.

A conversão de Números Digitais (ND) para radiância espectral no topo da atmosfera ( $L_{\lambda}$ ) das bandas dos instrumentos imageadores OLI e TIRS deverá ser processada com base na seguinte equação:

$$L_{\lambda} = M_L Q_{cal} + A_L$$

Em que,

 $L_{\lambda}$ : radiância espectral no topo da atmosfera (W/m<sup>2</sup> srad  $\mu$ m);

- M<sub>L</sub>: fator multiplicativo reescalonado da radiância para a banda específica (RADIANCE\_MULT\_ BAND\_x), onde x é número da banda. Os valores de M<sub>L</sub> estão disponibilizados na Tabela 2;
- Q<sub>cal</sub> Número Digital (ND) do pixel; e
- A<sub>L</sub>: fator aditivo reescalonado da radiância para a banda específica (RADIANCE\_ADD\_ BAND\_x), onde x é número da banda. Os valores de A<sub>L</sub> estão disponibilizados na Tabela 3.
- 1. Clique sobre o botão ArcToolbox 🔊 na barra de ferramentas Standard;
- 2. Na caixa de diálogo ArcToolbox, expanda a opção Spatial Analyts Tools;
- 3. Expanda a opção Map Algebra;

(eq.

4. Clique com o **botão direito do mouse** sobre a ferramenta **Raster Calculator** e, na janela de menu rápido, clique sobre a opção **Batch** (Lote);



- 5. Na caixa de diálogo **Raster Calculator**, na primeira linha do campo **Output raster**, clique com **botão direito do mouse** e, na janela de menu rápido, clique em **Open**;
- Na caixa de diálogo Project Raster: 1 vá para o diretório C:\Livro\_SR\_ArcGIS\_10\_2 e digite OLI\_1\_L;
- 7. Clique sobre o botão OK;
- 8. Clique sobre o botão Add row 🛨 10 vezes (deverão ser inseridas 11 linhas);
- 9. Clique como **botão direito do mouse** sobre a primeira linha do campo **Output raster** e, na janela de menu rápido, clique sobre a opção **Fill**;

| 🔨 Raster ( | Calculator             |                                                                 |          |
|------------|------------------------|-----------------------------------------------------------------|----------|
|            |                        |                                                                 | <b>^</b> |
|            | Map Algebra expression | Output raster                                                   |          |
|            |                        | C:lusers Alexandre RosalDocuments ArcGis Detault.gob/raster=4cs | Open     |
|            |                        |                                                                 | Browse   |
|            |                        | OK Cancel Environments Show                                     | Fill     |
|            |                        |                                                                 | Clear    |



|   | Map Algebra expression | Out             | put raster       |       |
|---|------------------------|-----------------|------------------|-------|
|   |                        | C:\Livro_SR_Arc | GIS 10 2\OLI 1 L | ] 🗭 🗕 |
| 2 |                        |                 | Open             |       |
|   |                        |                 | Browse           | . ×   |
|   |                        |                 |                  |       |
| ; |                        |                 | Fill 9           |       |
| ' |                        |                 | Clear            |       |
| ; |                        |                 | Сору             | •     |
| 0 |                        |                 | Dasta            |       |
| 1 |                        |                 | Paste            | -     |
|   |                        |                 | Delete           | -     |

10. Renomeia as saídas das novas imagens (linhas de 2 a 11) de C:\Livro\_SR\_ArcGIS\_10\_2 \OLI\_1\_L para:

| ANTES                           | DEPOIS DE RENOMEAR                      |
|---------------------------------|-----------------------------------------|
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\OLI_2_L         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\OLI_3_L         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\ <b>OLI_4_L</b> |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\OLI_5_L         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\ <b>OLI_6_L</b> |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\OLI_7_L         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\ <b>OLI_8_L</b> |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\OLI_9_L         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\TIRS_10_L       |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_L | C:\Livro_SR_ArcGIS_10_2\TIRS_11_L       |

11. Dê um clique duplo sobre a primeira linha do campo Map Algebra expression.;

| Raster Cal | culator                |                                   |              |
|------------|------------------------|-----------------------------------|--------------|
|            | Map Algebra expression | Output raster                     | _            |
| 1          | 1                      | C:\Livro_SR_ArcGIS_10_2\OLI_1_L   | +            |
| 2          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_2_L   |              |
| 3          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_3_L   |              |
| 4          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_4_L   |              |
| 5          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_5_L   |              |
| 6          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_6_L   |              |
| 7          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_7_L   |              |
| 8          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_8_L   | •            |
| 9          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_9_L   |              |
| 10         |                        | C:\Livro_SR_ArcGIS_10_2\TIRS_10_L | 0            |
| 11         |                        | C:\Livro_SR_ArcGIS_10_2\TIRS_11_L |              |
|            |                        |                                   |              |
|            |                        | K Cancel Environments             | Show Help >> |

- 12. Na caixa de diálogo Raster Calculator: 1, utilize o mouse para entrar com o valor de 0.012620;
- 13. Clique sobre o símbolo \*;
- 14. Dê um clique duplo sobre a imagem OLI\_1 no painel Layers and variables;
- 15. Clique sobre o símbolo -;
- 16. Novamente utilize o mouse para entrar com o valor 63.09797;
  17. Clique sobre o botão OK;

| Kaster Calculator: 1                                                                                                                                                                                                            |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Map Algebra expression<br>$\begin{array}{c c} Layers and variables & \uparrow \\ OLI_1 & = 7 8 9 / == != & \\ OLI_2 & = 7 8 9 / == != & \\ OLI_3 & + 5 6 & > >=   \\ OLI_5 & + 1 2 3 - < <= ^ \\ OLI_6 & + () \sim \end{array}$ | Conditional A<br>Con |
| 0.012620 * "OLI_1" - 63.09797 RESULTADO DOS<br>DE 12 A 1                                                                                                                                                                        | S PASSOS             |
| 17 ок Са                                                                                                                                                                                                                        | ancel Show Help >>   |

18. De volta a caixa de diálogo Raster Calculator, clique com o botão direito do mouse sobre a primeira linha do campo Map Algebra expression e, na janela de menu rápido, clique sobre a opção Fill;

| 🔨 Raster | r Calculator                  |        |                           |
|----------|-------------------------------|--------|---------------------------|
|          |                               |        |                           |
|          | Map Algebra expressio         | n      | Output raster             |
| 1        | 0.012620 * "OLI_1" - 63.09797 | 0      | S_10_2\0LI_1_L            |
| 2        |                               | Open   | S_10_2\0LI_2_L            |
| 3        |                               | Browse | S_10_2\OLI_3_L            |
| 4        |                               |        | \$_10_2\0LI_4_L           |
| 5        |                               | Fill   | 18 <u>s_10_2\0LI_5_</u> L |
| 6        |                               | Clear  | \$_10_2\OLI_6_L           |
| 7        |                               |        | S_10_2\OLI_7_L            |
| 8        |                               | Сору   | S_10_2\OLI_8_L            |
| 9        |                               | Dacte  | S_10_2\OLI_9_L            |
| 10       |                               | Faste  | S_10_2\TIRS_10_L          |
| 11       |                               | Delete | S_10_2\TIRS_11_L          |
|          |                               |        |                           |

19. Renomeia as saídas das novas equações (linha de 2 a 11) de 0.012620 \* "OLI\_1" -63.09797 para:

| EQUAÇÃO ANTERIOR              | EQUAÇÃO RENOMEADA                |
|-------------------------------|----------------------------------|
| 0.012620 * "OLI_1" – 63.09797 | 0.012869 * "OLI_2" – 64.34332    |
| 0.012620 * "OLI_1" - 63.09797 | 0.011783 * "OLI_3" – 58.91678    |
| 0.012620 * "OLI_1" – 63.09797 | 0.0099798 * "OLI_4" – 49.89890   |
| 0.012620 * "OLI_1" - 63.09797 | 0.0060558 * "OLI_5" - 30.27921   |
| 0.012620 * "OLI_1" – 63.09797 | 0.0015258 * "OLI_6" – 7.62885    |
| 0.012620 * "OLI_1" - 63.09797 | 0.00049633 * "OLI_7" – 2.48165   |
| 0.012620 * "OLI_1" – 63.09797 | 0.011242 * "OLI_8" – 56.20796    |
| 0.012620 * "OLI_1" – 63.09797 | 0.0024886 * "OLI_9" – 12.44298   |
| 0.012620 * "OLI_1" – 63.09797 | 0.00033420 * "TIRS_10" + 0.10000 |
| 0.012620 * "OLI_1" - 63.09797 | 0.00033420 * "TIRS_11" + 0.10000 |

- 20. Clique sobre o botão Check values 🗹 para verificação prévia do processamento;
- 21. Clique sobre o botão **OK**;e

| - <b>K</b> | Raster | Calculator                       |           | E                                 | - • •        |
|------------|--------|----------------------------------|-----------|-----------------------------------|--------------|
|            |        |                                  |           |                                   | *            |
|            |        | Map Algebra expression           |           | Output raster                     |              |
|            | 1      | 0.012620 * "OLI_1" - 63.09797    |           | C:\Livro_SR_ArcGIS_10_2\OLI_1_L   | +            |
|            | 2      | 0.012869 * "OLI_2" - 64.34332    |           | C:\Livro_SR_ArcGIS_10_2\OLI_2_L   |              |
|            | 3      | 0.011783 * "OLI_3" - 58.91678    |           | C:\Livro_SR_ArcGIS_10_2\OLI_3_L   | X            |
|            | 4      | 0.0099798 * "OLI_4" - 49.89890   |           | C:\Livro_SR_ArcGIS_10_2\0LI_4_L   |              |
|            | 5      | 0.0060558 * "OLI_5" - 30.27921   |           | C:\Livro_SR_ArcGIS_10_2\OLI_5_L   |              |
|            | 6      | 0.0015258 * "OLI_6" - 7.62885    |           | C:\Liv_SR_ArcGIS_10_2\0LI_6_L     |              |
|            | 7      | 0.00049633 * "OLI_7" - 2.48165   | $\square$ | C:\Li\SR_ArcGIS_10_2\OLI_7_L      |              |
|            | 8      | 0.011242 * "OLI_8" - 56.20796    |           | C:\Livro_SR_ArcGIS_10_2\OLI_8_L   | •            |
|            | 9      | 0.0024886 * "OLI_9" - 12.44298   |           | C:\Livro_SR_ArcGIS_10_2\OLI_9_L   |              |
|            | 10     | 0.00033420 * "TIRS_10" + 0.10000 |           | C:\Livro_SR_ArcGIS_10_2\TIRS_10_L |              |
|            | 11     | 0.00033420 * "TIRS_11" + 0.10000 |           | C:\Livro_SR_ArcGIS_10_2\TIRS_11_L |              |
|            |        | -                                |           |                                   |              |
|            |        |                                  |           |                                   |              |
|            |        |                                  |           | 20-                               | <b>√</b>     |
|            |        |                                  |           |                                   |              |
| 1          |        |                                  |           |                                   |              |
|            |        | 21 — ок                          |           | Cancel Environments               | Show Help >> |
|            |        |                                  |           |                                   |              |

22. Ordene as novas imagens convertidas para radiância na Tabela de Conteúdos.



(eq. 2)

### 9. CONVERSÃO DE RADIÂNCIA NO TOPO DA ATMOSFERA (L<sup>1</sup>) PARA REFLECTÂNCIA PLANETÁRIA NO TOPO DA ATMOSFERA ( $\rho\lambda$ )

A conversão das imagens em Número Digitais (ND) para reflectância planetária sem correção é dada pela seguinte equação:

$$\rho_{\lambda'} = M_{\rho}Q_{cal} + A\rho$$

Em que,

reflectância planetária no topo da atmosfera sem correção do ângulo solar;  $\rho_{\lambda'}$ :

fator multiplicativo reescalonado da reflectância para a banda específica  $M_{\rho}$ : (REFLECTANCE\_MULT\_ BAND\_x), onde x é número da banda. Os valores de  $M_{\rho}$ estão disponibilizados na Tabela 4; Número Digital (ND) do pixel; e

Q<sub>cal</sub>

 $A\rho$ : fator aditivo reescalonado da reflectância para a banda específica (REFLECTANCE \_ADD\_ BAND\_x), onde x é número da banda. Os valores de A $\rho$  estão disponibilizados na Tabela 5.

A reflectância planetária corrigida pode ser obtida pela seguinte equação

$$\rho_{\lambda} = \frac{\rho_{\lambda'}}{\operatorname{sen}(\theta_{\mathsf{SE}})} = \frac{\rho_{\lambda'}}{\cos(\theta_{\mathsf{SZ}})}$$
(eq. 3)

Em que,

- reflectância exoatmosférica ou do topo da atmosfera;  $\rho_{\lambda}$ :
- ângulo de elevação solar local equivalente ao valor SUN\_ELEVATION disponibilizado  $\theta_{SF}$ : na Tabela 6; e
- $\theta_{S7}$ : ângulo solar zenital local ( $\theta_{SZ} = 9 - \theta_{SE}$ ).
- Clique sobre o botão ArcToolbox 
   na barra de ferramentas Standard;
- 2. Na caixa de diálogo ArcToolbox, expanda a opção Spatial Analyts Tools;
- 3. Expanda a opção Map Algebra;
- 4. Clique com o botão direito do mouse sobre a ferramenta Raster Calculator e, na janela de menu rápido, clique sobre a opção Batch (Lote);



- 5. Na caixa de diálogo **Raster Calculator**, na primeira linha do campo **Output raster**, clique com **botão direito do mouse** e, na janela de menu rápido, clique em **Open**;
- Na caixa de diálogo Project Raster: 1 vá para o diretório C:\Livro\_SR\_ArcGIS\_10\_2 e digite OLI\_1\_P;
- 7. Clique sobre o botão OK;
- 8. Clique sobre o botão Add row 🛨 10 vezes (deverão ser inseridas 11 linhas);
- 9. Clique como **botão direito do mouse** sobre a primeira linha do campo **Output raster** e, na janela de menu rápido, clique sobre a opção **Fill**;

| Map Alg      | ebra expression C:\Use                      | Output raster<br>ers\Alexandre Rosa\Documents\ArcGIS\Default.gd                         | b\rastercalc5 |
|--------------|---------------------------------------------|-----------------------------------------------------------------------------------------|---------------|
|              |                                             | OK Cancel Environmen                                                                    | ts Show Fi    |
| Raster Calcu | Output raster<br>C:\Livro_SR_ArcGIS_10<br>7 | _2\OLI_1_P 6                                                                            |               |
| 1<br>2<br>3  | Map Algebra expression                      | Output raster           C:\Livro_SR_ArcGIS_10_2\0LL_1_P           Open           Browse | <b>1</b> 8    |

10. Renomeia as saídas das novas imagens (linhas de 2 a 11) de C:\Livro\_SR\_ArcGIS\_10\_2 \OLI\_1\_P para:

| ANTES                           | DEPOIS DE RENOMEAR                |
|---------------------------------|-----------------------------------|
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\OLI_2_P   |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\OLI_3_P   |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\OLI_4_P   |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\OLI_5_P   |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\OLI_6_P   |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\OLI_7_P   |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\OLI_8_P   |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\OLI_9_P   |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\TIRS_10_P |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P | C:\Livro_SR_ArcGIS_10_2\TIRS_11_P |

11. Dê um clique duplo sobre a primeira linha do campo Map Algebra expression;

| 🔨 Raster C | alculator              | [                                 | - • ×        |
|------------|------------------------|-----------------------------------|--------------|
|            |                        |                                   | *            |
|            | Map Algebra expression | Output raster                     |              |
| 1          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_1_P   | 1 🛨          |
| 2          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_2_P   |              |
| 3          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_3_P   | ×            |
| 4          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_4_P   |              |
| 5          | (11)                   | C:\Livro_SR_ArcGIS_10_2\OLI_5_P   |              |
| 6          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_6_P   |              |
| 7          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_7_P   |              |
| 8          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_8_P   | •            |
| 9          |                        | C:\Livro_SR_ArcGIS_10_2\OLI_9_P   |              |
| 10         |                        | C:\Livro_SR_ArcGIS_10_2\TIRS_10_P |              |
| 11         |                        | C:\Livro_SR_ArcGIS_10_2\TIRS_11_P |              |
|            |                        |                                   | _            |
| 1          |                        |                                   |              |
|            | ОК                     | Cancel Environments               | Show Help >> |

- Na caixa de diálogo Raster Calculator: 1, clique sobre o símbolo :
   Utilize o mouse para entrar com o valor de 0.00002;
- 14. Clique sobre o símbolo \*;
- 15. Dê um clique duplo sobre a imagem OLI\_1 no painel Layers and variables;
- 16. Clique sobre o símbolo -;
- 17. Novamente utilize o mouse para entrar com o valor **0.1**.
- 18. Clique sobre o símbolo .;
- 19. Clique sobre o símbolo  $\boxed{}$ ;
- 20. Na caixa de funções à esquerda, clique sobre a função trigonométrica sin (seno);
- 21. Clique sobre o símbolo \*;
- 22. Novamente utilize o mouse para entrar com o valor **0.01745** (equivalente a  $\pi$ /180, pois no ArcGIS o ângulo a ser usado nas funções trigonométricas deve estar em radianos);
- 23. Clique sobre o botão OK;

| Kaster Calculator : 1                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Map Algebra expression<br>$\begin{array}{c c} Layers and variables \land \\ \diamond OLI_1_L & = \\ \diamond OLI_2_L & \\ \diamond OLI_3_L & \\ \diamond OLI_4_L & \\ \diamond OLI_5_L & \\ \leftarrow OLI_6_L & \\ \hline \end{array} \begin{array}{c} 7 & 8 & 9 & / == != & \\ 4 & 5 & 6 & \\ \hline 2 & 3 & - & < = & \\ 1 & 2 & 3 & - & < & = & \\ \hline 0 & . & + & () & \\ \end{array}$ | Conditional Con<br>Pick<br>SetNull<br>Math Abs<br>Exp<br>Even10 |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745)                                                                                                                                                                                                                                                                                                                                         | RESULTADO DOS PASSOS<br>DE 12 A 22                              |
|                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |

24. De volta a caixa de diálogo Raster Calculator, clique com o botão direito do mouse sobre a primeira linha do campo Map Algebra expression e, na janela de menu rápido, clique sobre a opção Fill;

|                                                  | Map Algebra expression               | Output raster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | Fill Clear<br>Copy<br>Paste<br>Delet | Livro_SR_ArcGis_10_20L1_2P     Livro_SR_ArcGis_10_20L1_2P     Livro_SR_ArcGis_10_20L1_2P     Livro_SR_ArcGis_10_20L1_4P     SR_ArcGis_10_20L1_6P     Livro_SR_ArcGis_10_20L1_6P     Livro_SR_ArcGis_10_20L1_6P     Livro_SR_ArcGis_10_20L1_8P     Livro_SR_ArcGis_10_20L1_9P     Livro_SR_ArcGis_10_20L1_9P     Livro_SR_ArcGis_10_20L1_8P     Livro_SR_ArcGis_10_20L1_8P |
|                                                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

25. Renomeia as saídas das novas equações (linha de 2 a 11) de **(0.00005 \* "OLI\_1" - 0.1) /** Sin(41.74834737 \* 0.01745) para:

| EQUAÇÃO ANTERIOR                                       | EQUAÇÃO RENOMEADA                                               |
|--------------------------------------------------------|-----------------------------------------------------------------|
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * " <b>OLI_2</b> " - 0.1) / Sin(41.74834737 * 0.01745) |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * "OLI_3" - 0.1) / Sin(41.74834737 * 0.01745)          |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * " <b>OLI_4</b> " - 0.1) / Sin(41.74834737 * 0.01745) |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * "OLI_5" - 0.1) / Sin(41.74834737 * 0.01745)          |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * " <b>OLI_6</b> " - 0.1) / Sin(41.74834737 * 0.01745) |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * "OLI_7" - 0.1) / Sin(41.74834737 * 0.01745)          |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * " <b>OLI_8</b> " - 0.1) / Sin(41.74834737 * 0.01745) |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * " <b>OLI_9</b> " - 0.1) / Sin(41.74834737 * 0.01745) |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * "TIRS_10" - 0.1) / Sin(41.74834737 * 0.01745)        |
| (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745) | (0.00002 * "TIRS_11" - 0.1) / Sin(41.74834737 * 0.01745)        |

26. Clique sobre o botão Check values ✓ para verificação prévia do processamento;
27. Clique sobre o botão OK e;

| 🔨 Raster Calculator |                                                          |                                   |  |  |
|---------------------|----------------------------------------------------------|-----------------------------------|--|--|
|                     |                                                          | *                                 |  |  |
|                     | Map Algebra expression                                   | Output raster                     |  |  |
| 1                   | (0.00002 * "OLI_1" - 0.1) / Sin(41.74834737 * 0.01745)   | C:\Livro_SR_ArcGIS_10_2\0LI_1_P   |  |  |
| 2                   | (0.00002 * "OLI_2" - 0.1) / Sin(41.74834737 * 0.01745)   | C:\Livro_SR_ArcGIS_10_2\0LI_2_P   |  |  |
| 3                   | (0.00002 * "OLI_3" - 0.1) / Sin(41.74834737 * 0.01745)   | C:\Livro_SR_ArcGIS_10_2\0LI_3_P   |  |  |
| 4                   | (0.00002 * "OLI_4" - 0.1) / Sin(41.74834737 * 0.01745)   | C:\Livro_SR_ArcGIS_10_2\0LI_4_P   |  |  |
| 5                   | (0.00002 * "OLI_5" - 0.1) / Sin(41.74834737 * 0.01745)   | C:\Livro_SR_ArcGIS_10_2\OLI_5_P   |  |  |
| 6                   | (0.00002 * "OLI_6" - 0.1) / Sin(41.74834737 * 0.01745)   | C:\LivrorcGIS_10_2\OLI_6_P        |  |  |
| 7                   | (0.00002 * "OLI_7" - 0.1) / Sin(41.74834737 * 0.01745)   | C:\Livro_20_rcGIS_10_2\0LI_7_P    |  |  |
| 8                   | (0.00002 * "OLI_8" - 0.1) / Sin(41.74834737 * 0.01745)   | C:\Livro_SR_ArcGIS_10_2\OLI_8_P   |  |  |
| 9                   | (0.00002 * "OLI_9" - 0.1) / Sin(41.74834737 * 0.01745)   | C:\Livro_SR_ArcGIS_10_2\OLI_9_P   |  |  |
| 10                  | (0.00002 * "TIRS_10" - 0.1) / Sin(41.74834737 * 0.01745) | C:\Livro_SR_ArcGIS_10_2\TIRS_10_P |  |  |
| 11                  | (0.00002 * "TIRS_11" - 0.1) / Sin(41.74834737 * 0.01745) | C:\Livro_SR_ArcGIS_10_2\TIRS_11_P |  |  |
|                     |                                                          | 26 - 🗸 -                          |  |  |
|                     | 27 — ОК                                                  | Cancel Environments Show Help >>  |  |  |

28. Ordene as novas imagens convertidas para radiância na Tabela de Conteúdos.



# 10. CONVERSÃO DE RADIÂNCIA NO TOPO DA ATMOSFERA (L $\lambda$ ) PARA TEMPERATURA DE BRILHO EM KELVIN (K) E GRAUS CELSIUS (°C)

Para os dados termais do Landsat 8, as bandas do sensor Thermal InfraRed Sensor (TIRS) podem ser convertidas de radiância espectral no topo da atmosfera para temperatura de brilho no sensor. A temperatura de brilho no sensor ou temperatura radiante ( $T_{rad}$ ) assume que a Terra é um corpo negro, isto é, com emissividade igual a 1, e inclui efeitos atmosféricos como absorção e outras emissões ao longo do caminho superfície-sensor sendo estimada pela seguinte equação:

$$T_{rad} = \frac{K_2}{\ln\left(\frac{K_1}{L_\lambda} + 1\right)}$$

(eq. 4)

em que,

T<sub>rad</sub>: temperatura de brilho no sensor ou temperatura radiante (K);

K<sub>2</sub>: constante termal da banda específica (K2\_CONSTANT\_BAND\_x), onde x é número da banda, ou seja, das bandas 10 ou 11;

- K<sub>1</sub>: constante termal da banda específica (K1\_CONSTANT\_BAND\_x), onde x é número da banda, ou seja, das bandas 10 ou 11; e
- $L_{\lambda}$ : radiância espectral no topo da atmosfera (W/m<sup>2</sup> srad  $\mu$ m).

A temperatura de brilho no sensor em °C (graus Celsius) é dada por:

$$T_{rad}(^{\circ}C) = T_{rad} - 2$$

Em que,

T<sub>rad</sub>(°C): temperatura de brilho no sensor ou temperatura radiante ( °C ).

- 1. Clique sobre o botão ArcToolbox 👼 na barra de ferramentas Standard;
- 2. Na caixa de diálogo ArcToolbox, expanda a opção Spatial Analyts Tools;
- 3. Expanda a opção Map Algebra;
- Clique com o botão direito do mouse sobre a ferramenta Raster Calculator e, na janela de menu rápido, clique sobre a opção Batch (Lote);



- 5. Na caixa de diálogo **Raster Calculator**, na primeira linha do campo **Output raster**, clique com **botão direito do mouse** e, na janela de menu rápido, clique em **Open**;
- Na caixa de diálogo Project Raster: 1 vá para o diretório C:\Livro\_SR\_ArcGIS\_10\_2 e digite Trad\_TIRS\_10;
- 7. Clique sobre o botão OK;
- 8. Clique sobre o botão Add row 🛨 2 vezes (deverão ser inseridas 2 linhas);
- Clique como botão direito do mouse sobre a primeira linha do campo Output raster e, na janela de menu rápido, clique sobre a opção Fill;

| 🔨 Raster Calculator |                                   |                                        | 3   |
|---------------------|-----------------------------------|----------------------------------------|-----|
|                     |                                   | 4                                      |     |
| Map Algebra ex<br>1 | pression<br>C:\Users\Alexandre Rr | Output raster                          |     |
|                     |                                   | Brov                                   | wse |
|                     | ОК                                | Cancel Environments Show Fill<br>Clear | ar  |

(eq. 5)

| × | Raster Calculator : 1                              |
|---|----------------------------------------------------|
|   | Output raster C:\Livro_SR_ArcGIS_10_2\Trad_TIRS_10 |
|   | 7 OK Cancel Show Help >>                           |

| 🔨 Raster Calculator    |                                     | - 8 -                 |
|------------------------|-------------------------------------|-----------------------|
|                        |                                     | *                     |
| Map Algebra expression | Output raster                       |                       |
| 2                      | C.1LWI0_SR_AICOIS_I0_2(IIad_IIRS_I0 | Open                  |
|                        |                                     | Browse                |
|                        |                                     | Fill9                 |
|                        |                                     | Clear                 |
|                        |                                     | Сору                  |
|                        |                                     | Paste                 |
|                        |                                     | Delete                |
|                        |                                     | <ul> <li>.</li> </ul> |
|                        | OK Cancel Environme                 | ents Show Help >>     |

10. Renomeia a saída da nova imagem (linha de 2) de C:\Livro\_SR\_ArcGIS\_10\_2 \Trad\_TIRS\_10 para:

| ANTES                                | DEPOIS DE RENOMEAR                   |  |
|--------------------------------------|--------------------------------------|--|
| C:\Livro_SR_ArcGIS_10_2\Trad_TIRS_10 | C:\Livro_SR_ArcGIS_10_2\Trad_TIRS_11 |  |

11. Dê um clique duplo sobre a primeira linha do campo Map Algebra expression.;

| 🔨 Raster Calcula | tor                    |                                      | - • •               |
|------------------|------------------------|--------------------------------------|---------------------|
|                  |                        |                                      | *                   |
|                  | Map Algebra expression | Output raster                        | _                   |
| 1                |                        | C:\Livro_SR_ArcGIS_10_2\Trad_TIRS_10 |                     |
|                  |                        |                                      | ×                   |
|                  | 11                     |                                      | <b>1</b>            |
|                  |                        |                                      | Ŧ                   |
|                  |                        |                                      |                     |
|                  |                        |                                      |                     |
|                  |                        |                                      | <ul> <li></li></ul> |
|                  |                        | OK Cancel Environments               | S Show Help >>      |

- 12. Na caixa de diálogo Raster Calculator: 1, utilize o mouse para entrar com o valor de **1321.08**;
- Clique sobre o símbolo :
   Clique na função matemática (math) In (logaritmo natural ou logaritmo neperiano);
- Clique sobre o símbolo :
   Utilize o mouse para entrar com o valor de 774.89;
- 17. Clique sobre o símbolo *[*,

- 18. Dê um clique duplo sobre a imagem TIRS\_10\_L no painel Layers and variables;
- 19. Clique sobre o símbolo  $\square$ ;
- 20. Clique sobre o símbolo +;
  21. Utilize o mouse para entrar com o valor de 1;
- 22. Clique sobre o botão OK;

| Kaster Calculator : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>—</b>                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Map Algebra expression<br>$\begin{array}{c c} & OLI_7_L \\ & OLI_8_L \\ & OLI_9_L \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ | Conditional             |
| 1321.08 / Ln((774.89 / "TIRS_10_L") + 1) RESULTADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D DOS PASSOS<br>12 A 22 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |

23. De volta a caixa de diálogo Raster Calculator, clique com o botão direito do mouse sobre a primeira linha do campo Map Algebra expression e, na janela de menu rápido, clique sobre a opção Fill;

|       | Map Algebra expression                |                 | Output raster                              | <b></b> |
|-------|---------------------------------------|-----------------|--------------------------------------------|---------|
| 1 132 | 1.08 / Ln((774.89 / "TIRS_10_L") + 1) | Open<br>Browse  | 5_10_2\Trad_TIRS_10<br>5_10_2\Trad_TIRS_11 | I X     |
|       |                                       | Fill            | -23                                        | 1       |
|       |                                       | Сору            |                                            | 4       |
|       |                                       | Paste<br>Delete |                                            | 0       |
|       | L.,                                   |                 |                                            |         |

24. Renomeia a saída da nova equação (linha de 2) de 1321.08 / Ln((774.89 / "TIRS\_10\_L") + 1) para:

| EQUAÇÃO ANTERIOR                         | EQUAÇÃO RENOMEADA                        |
|------------------------------------------|------------------------------------------|
| 1321.08 / Ln((774.89 / "TIRS_10_L") + 1) | 1201.14 / Ln((480.89 / "TIRS_11_L") + 1) |

- 25. Clique sobre o botão Check values 🗹 para verificação prévia do processamento;
- 26. Clique sobre o botão OK;

| 🔨 Raster ( | Calculator                                                                           | - • •        |
|------------|--------------------------------------------------------------------------------------|--------------|
|            |                                                                                      | *            |
|            | Map Algebra expression Output raster                                                 |              |
| 2          | 1201.14 / Ln((480.89 / "TIRS_11_L") + 1) 24 /ro_SR_ArcGis_10_2(Trad_TIRS_11_L") + 1) | -            |
|            |                                                                                      | ×            |
|            |                                                                                      | 1            |
|            |                                                                                      | Ŧ            |
|            |                                                                                      |              |
|            |                                                                                      |              |
|            | 25                                                                                   |              |
|            | Cancel Environments                                                                  | Show Help >> |

- 27. Repita os passos de 1 a 28 para converter a radiância no topo da atmosfera (L*λ*) para temperatura de brilho em graus Celsius (°C) com o intuito de gerar as seguintes imagens de saída:
- TradC\_TIRS\_10; e
- TradC\_TIRS\_11.

| 5 | Raster (  | Calculator             |                                      | - • •        |  |
|---|-----------|------------------------|--------------------------------------|--------------|--|
|   |           |                        |                                      | *            |  |
|   |           | Map Algebra expression | Output raster                        |              |  |
|   | 1         | "Trad_TIRS_10" - 273   | C:\Livro_SR_ArcGIS_10_2\TradC_TIRS_1 | • +          |  |
|   | 2         | "Trad_TIRS_11" - 273   | C:\Livro_SR_ArcGIS_10_2\TradC_TIRS_1 |              |  |
|   |           |                        |                                      | ×            |  |
|   |           | PAS                    | 27<br>SSOS A SEREM                   | 1            |  |
|   | EFETUADOS |                        |                                      |              |  |
|   |           |                        |                                      |              |  |
|   |           |                        |                                      |              |  |
|   |           |                        |                                      |              |  |
|   |           |                        |                                      |              |  |
|   |           |                        |                                      | ~            |  |
|   |           |                        | ,                                    |              |  |
|   |           |                        | Cancel                               | Show Help >> |  |
|   |           |                        |                                      | Show help >> |  |

28. Ordene as novas imagens convertidas de temperatura na Tabela de Conteúdos.



### 10.1. REPRESENTAÇÃO GRÁFICA DA VARIAÇÃO DA TEMPERATURA DE BRILHO DAS BANDAS DO SENSOR THERMAL INFRARED SENSOR (TIRS)

Nesta etapa será apresentada uma técnica visando realizar a representação gráfica da variação da temperatura de brilho dentro do quadrante representativo do município de Vitória, capital do estado do Espírito Santo, Brasil.

- Na Tabela de Conteúdos, clique com o botão direito do mouse sobre a layer Municipios\_Quadrante e, na janela de menu rápido, clique na opção Label Features. Neste caso você verá que os rótulos contendo os nomes dos municípios serão apagados sobre a imagem;
- 2. Novamente na **Tabela de Conteúdos**, clique sobre o **símbolo retangular** representativo do arquivo vetorial poligonal **Municipios\_Quadrante**;
- No dropdown da opção Outline Color (cor da linha de contorno), selecione a cor Black (Preto);
- 4. Clique sobre o botão OK;



- 5. Após expandir a layer **Tradc\_TIRS\_10**, clique com o **botão esquerdo do mouse** sobre sua paleta de cor;
- Na caixa de diálogo Select Color Ramp, no dropdown da opção Color Ramp, selecione a paleta de core Arco-íris (que vai do vermelho, na esquerda, para o azul, na direita);
- 7. Marque a opção **Invert**;
- 8. Clique sobre o botão OK;
- 9. Repita os passos de 5 a 8 para as imagens:
- Tradc\_TIRS\_11;
- Trad\_TIRS\_10; e
- Trad\_TIRS\_11.



10. Na barra menus, clique sobre o menu Customize, selecione Toolbars e clique sobre a barra de ferramentas Draw;

|   |                        | 3D Analyst              |     |
|---|------------------------|-------------------------|-----|
|   | Customize Windows Help | Advanced Editing        |     |
|   | Toolbars 🕨             | Animation               |     |
| 1 | Extensions             | ApUtilities             |     |
| - | Add-In Manager         | Arc Hydro Tools         |     |
|   | Customize Mode         | Arc2Google              |     |
|   | Style Manager          | ArcScan                 |     |
|   | ArcMan Ontions         | COGO                    |     |
|   |                        | Data Driven Pages       |     |
|   |                        | Data Frame Tools        |     |
|   |                        | Distributed Geodatabase |     |
|   |                        | Draw                    | -10 |
|   |                        | Edit Vertices           |     |

- 11. Na barra de ferramentas Draw, clique sobre a ferramenta Text;
- 12. No dropdown da opção Font Size, selecione o tamanho de fonte 24;
- Selecione a opção Bold (negrito);
   Clique sobre o centro do município de Vitória e, posteriormente, digite com letras maiúsculas (botão Caps Lock do teclado pressionado) o nome VITÓRIA;
- 15. Pressione o botão Enter do teclado;
- 16. Repita apenas os passos de 11, 14 e 15 para adicionar os seguintes nomes descritos abaixo e também representados na figura abaixo:



17. Na **barra menus**, clique sobre o menu **Customize**, selecione **Toolbars** e clique sobre a barra de ferramentas **3D Analyst**;

| - |                        |                     |    |
|---|------------------------|---------------------|----|
|   |                        | 3D Analyst          | 17 |
|   | Customize Windows Help | Ip Advanced Editing |    |
| 1 | Toolbars 🕨             | Animation           |    |
| ī | Extensions             | ApUtilities         |    |
|   | Add-In Manager         | Arc Hydro Tools     |    |
|   | Customize Mode         | Arc2Google          |    |
|   | Style Manager          | ArcScan             |    |
|   | ArcMan Ontions         | COGO                |    |
|   | Анстиар Орнонз         | Data Driven Pages   |    |

- Na barra de ferramentas 3D Analyst, no dropdown da opção 3D Analyst Layer, selecione a layer Tradc\_TIRS\_10;
- 19. Clique sobre a ferramenta Interpolate Line 2;
- 20. Clique apenas uma vez (único clique) imediatamente acima da letra A na imagem;
- 21. Arraste a linha e dê um clique duplo imediatamente acima da letra B na imagem. Observe que será gerada uma linha reta indo do ponto A até o ponto B;
- 22. Com o objetivo de desabilitar a ferramenta Interpolate Line, clique sobre a ferramenta Select Elements k da barra de ferramentas Standard ou Draw;
- 23. Dê um clique duplo sobre a linha recém criada;
- 24. Na caixa de diálogo Properties, no dropdown da opção Color, selecione a cor Mars Red;
- 25. No dropdown da opção Width (espessura), entre com o valor 3;
- 26. Clique sobre o botão OK;
- 27. Novamente na barra de ferramentas **3D Analyst**, clique sobre a ferramenta **Profile Graph** he veja o resultado;









Abaixo segue a interpretação da variação da temperatura de brilho (°C) da banda 10 do sensor Thermal Infrared Sensor (TIRS\_10):

| REGIÃO | CARACTERÍSTICAS                                                                            |
|--------|--------------------------------------------------------------------------------------------|
| Α      | Região com temperaturas mais baixa representativa do Oceano Atlântico;                     |
| В      | Região com temperaturas mais elevadas representativa de industrialização;                  |
| С      | Região com temperaturas mais baixa representativa do Oceano Atlântico (Bahia de Vitória);  |
| D      | Região com temperaturas mais elevadas representativa do centro de Vitória (Ilha de Calor); |
| Е      | Região com temperaturas mais baixa representativa de áreas verdes;                         |
| F      | Região com temperaturas mais elevadas representativa de áreas urbanas;                     |
| G      | Região com temperaturas mais baixa representativa da presença de água doce/salgada; e      |
| н      | Região com temperaturas mais elevadas representativa de áreas urbanas.                     |

28. Novamente, após selecionar a imagem Tradc\_TIRS\_11 no dropdown da opção 3D Analyst Layer, repita os passos de 19 a 27 e veja o resultado;



- 29. Certifique-se que a linha de interpolação esteja alçada e, posteriormente, clique sobre o botão **Delete** do teclado para remover a mesma;
- 30. Selecione a letra **A** e, posteriormente, clique sobre o botão **Delete** do teclado para remover a mesma;
- 31. Selecione a letra **B** e, posteriormente, clique sobre o botão **Delete** do teclado para remover a mesma;
- 32. Feche os gráficos gerados; e
- 33. Feche a barra de ferramentas 3D Analyst.

### 11. COMPOSIÇÕES COLORIDAS DE IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8

O Landsat 8 foi desenvolvido com a possibilidade de realização de novas composições de bandas. Como exemplo, neste capítulo, serão apresentadas, passo a passo, as etapas necessárias para a composição colorida das seguintes imagens orbitais:

| COMPOSIÇÃO              | FINALIDADE                                          |
|-------------------------|-----------------------------------------------------|
| OLI4(R) OLI3(G) OLI2(B) | Cor natural;                                        |
| OLI7(R) OLI6(G) OLI4(B) | Falsa cor para avaliação da urbanização;            |
| OLI5(R) OLI4(G) OLI3(B) | Infravermelho colorida para avaliação da vegetação; |
| OLI6(R) OLI5(G) OLI2(B) | Avaliação da agricultura;                           |
| OLI7(R) OLI6(G) OLI5(B) | Avaliação da penetração atmosférica;                |
| OLI5(R) OLI6(G) OLI2(B) | Avaliação do vigor da vegetação;                    |
| OLI5(R) OLI6(G) OLI4(B) | Avaliação da terra e água;                          |
| OLI7(R) OLI5(G) OLI3(B) | Avaliação natural com remoção atmosférica;          |
| OLI7(R) OLI5(G) OLI4(B) | Infravermelho de ondas curtas; e                    |
| OLI6(R) OLI5(G) OLI4(B) | Análise da vegetação.                               |

- 1. Clique sobre o botão ArcToolbox 👼 na barra de ferramentas Standard;
- 2. Na caixa de diálogo ArcToolbox, expanda a opção Data Management Tools;
- 3. Expanda a opção Raster;
- 4. Expanda a opção Raster Processing;
- 5. Clique com o **botão direito do mouse** sobre a ferramenta **Composite Bands** e, na janela de menu rápido, clique sobre a opção **Batch** (Lote);



- Na caixa de diálogo Composite Bands, na primeira linha do campo Output Raster, clique com botão direito do mouse e, na janela de menu rápido, clique em Open. Na caixa de diálogo Composite Bands: 1 vá para o diretório C:\Livro\_SR\_ArcGIS\_10\_2. Digite Comp\_432. Finalmente, clique sobre o botão OK;
- 7. Clique sobre o botão Add row 🛨 9 vezes (deverão ser inseridas 10 linhas);
- 8. Clique como **botão direito do mouse** sobre a primeira linha do campo **Output Raster** e, na janela de menu rápido, clique sobre a opção **Fill**;



| 1     C:\Livro_SR_ArcGiS 10 2\Comp 432       2     Open       3     Browse       5     Fill       6     Clear       7     Clear       8     Copy       9     Delete |                                                                                                                | Input Rasters | Output F | Raster                                             | _ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|----------|----------------------------------------------------|---|
| Delete                                                                                                                                                              | 1           2           3           4           5           6           7           8           9           10 |               |          | Open<br>Browse<br>Fill 8<br>Clear<br>Copy<br>Paste |   |

9. Renomeia as saídas das novas imagens (linhas de 2 a 10) de C:\Livro\_SR\_ArcGIS\_10\_2\ Comp\_432 para:

| ANTES                            | DEPOIS DE RENOMEAR               |
|----------------------------------|----------------------------------|
| C:\Livro_SR_ArcGIS_10_2\Comp_432 | C:\Livro_SR_ArcGIS_10_2\Comp_764 |
| C:\Livro_SR_ArcGIS_10_2\Comp_432 | C:\Livro_SR_ArcGIS_10_2\Comp_543 |
| C:\Livro_SR_ArcGIS_10_2\Comp_432 | C:\Livro_SR_ArcGIS_10_2\Comp_652 |
| C:\Livro_SR_ArcGIS_10_2\Comp_432 | C:\Livro_SR_ArcGIS_10_2\Comp_765 |
| C:\Livro_SR_ArcGIS_10_2\Comp_432 | C:\Livro_SR_ArcGIS_10_2\Comp_562 |
| C:\Livro_SR_ArcGIS_10_2\Comp_432 | C:\Livro_SR_ArcGIS_10_2\Comp_564 |
| C:\Livro_SR_ArcGIS_10_2\Comp_432 | C:\Livro_SR_ArcGIS_10_2\Comp_753 |
| C:\Livro_SR_ArcGIS_10_2\Comp_432 | C:\Livro_SR_ArcGIS_10_2\Comp_754 |
| C:\Livro_SR_ArcGIS_10_2\Comp_432 | C:\Livro_SR_ArcGIS_10_2\Comp_654 |

10. Na primeira linha do campo **Input Rasters,** clique com **botão direito do mouse** e, na janela de menu rápido, clique em **Open**;

| ≪ Composite B                                   | ands                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
|-------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | Input Rasters Open Browse Fill Clear Copy Paste Delete | Output Raster           C:\Livro_SR_ArcGIS_10_2\Comp_432           C:\Livro_SR_ArcGIS_10_2\Comp_764           C:\Livro_SR_ArcGIS_10_2\Comp_652           C:\Livro_SR_ArcGIS_10_2\Comp_652           C:\Livro_SR_ArcGIS_10_2\Comp_765           C:\Livro_SR_ArcGIS_10_2\Comp_764           C:\Livro_SR_ArcGIS_10_2\Comp_765           C:\Livro_SR_ArcGIS_10_2\Comp_764           C:\Livro_SR_ArcGIS_10_2\Comp_753           C:\Livro_SR_ArcGIS_10_2\Comp_754           C:\Livro_SR_ArcGIS_10_2\Comp_654 | +<br>×<br>+<br>9<br>+ |
|                                                 | (                                                      | OK Cancel Environments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Show Help >>          |

- 11. Na caixa de diálogo **Composite Bands: 1**, no dropdown da opção **Input Rasters**, selecione as imagens **OLI\_4\_P**, **OLI\_3\_P** e **OLI\_2\_P**;
- 12. Clique sobre o botão OK;

| 🔨 Composite Bands : 1 🛛 💽                                           | 3 |
|---------------------------------------------------------------------|---|
| Input Rasters                                                       |   |
| $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $ | H |
| 12<br>< □ □ ↓<br>OK Cancel Show Help >>                             | • |

- 13. Clique como **botão direito do mouse** sobre a primeira linha do campo **Input Rasters** e, na janela de menu rápido, clique sobre a opção **Fill**;
- 14. Renomeia as entradas das novas imagens (linhas de 2 a 10) de C:\Livro\_ SR\_ArcGIS\_10\_2\Comp\_432 para:

| ANTES                   | DEPOIS DE RENOMEAR      |
|-------------------------|-------------------------|
| OLI_4_P;OLI_3_P;OLI_2_P | OLI_7_P;OLI_6_P;OLI_4_P |
| OLI_4_P;OLI_3_P;OLI_2_P | OLI_5_P;OLI_4_P;OLI_3_P |
| OLI_4_P;OLI_3_P;OLI_2_P | OLI_6_P;OLI_5_P;OLI_2_P |
| OLI_4_P;OLI_3_P;OLI_2_P | OLI_7_P;OLI_6_P;OLI_5_P |
| OLI_4_P;OLI_3_P;OLI_2_P | OLI_5_P;OLI_6_P;OLI_2_P |
| OLI_4_P;OLI_3_P;OLI_2_P | OLI_5_P;OLI_6_P;OLI_4_P |
| OLI_4_P;OLI_3_P;OLI_2_P | OLI_7_P;OLI_5_P;OLI_3_P |
| OLI_4_P;OLI_3_P;OLI_2_P | OLI_7_P;OLI_5_P;OLI_4_P |
| OLI_4_P;OLI_3_P;OLI_2_P | OLI_6_P;OLI_5_P;OLI_4_P |

- 15. Clique sobre o botão Check values 🗹 para verificação prévia do processamento e;
- 16. Clique sobre o botão OK;
- 17. Na barra de ferramentas **Standard**, clique sobre o botão **Salvar** 量; e
- 18. No menu File, clique sobre a opção Exit para sair do ArcMap.

| 🔨 Compo | site Bands              |        |                                               | - • •        |
|---------|-------------------------|--------|-----------------------------------------------|--------------|
|         |                         |        |                                               | *            |
|         | Input Rasters           |        | Output Raster                                 | _            |
| 1       | OLI_4_P;OLI_3_P;OLI_2_P | Open   | SR_ArcGIS_10_2\Comp_432<br>cGIS_10_2\Comp_764 | <b>±</b>     |
| 3       |                         | Browse | cGIS_10_2\Comp_543                            | ×            |
| 5       | (                       | Fill   | 13 cGIS_10_2\Comp_765                         |              |
| 7       |                         | Clear  | cGIS_10_2\Comp_564                            |              |
| 8       |                         | Сору   | cGIS_10_2\Comp_753<br>cGIS_10_2\Comp_754      |              |
| 10      |                         | Paste  | CGIS_10_2\Comp_654                            |              |
|         | L                       | Derete |                                               |              |
|         |                         |        |                                               | $\checkmark$ |
|         |                         |        |                                               |              |
|         |                         | ОК Са  | ncel Environments                             | Show Help >> |



Na Figura 7 são apresentadas todas as 10 composições coloridas geradas nesta etapa de trabalho.





Comp\_754: OLI7(R) OLI5(G) OLI4(B): infravermelho de ondas curtas.



Comp\_564: OLI5(R) OLI6(G) OLI4(B): avaliação da terra e água.



Comp\_765: OLI7(R) OLI6(G) OLI5(B): avaliação da penetração atmosférica.



Comp\_543: OLI5(R) OLI4(G) OLI3(B): infravermelho colorida para avaliação da vegetação.



Comp\_432: OLI4(R) OLI3(G) OLI2(B): cor natural.

Figura 7. Composições coloridas de bandas espectrais do satélite Landsat 8.

### 12. ESPACIALIZAÇÃO TRIDIMENSIONAL DE UMA IMAGEM DE COMPOSIÇÃO COLORIDA REPRESENTATIVA DA ANÁLISE DA VEGETAÇÃO (COMP\_654) SOBRE UMA IMAGEM ASTER GDEM EM DIFERENTES PONTOS DE OBSERVAÇÃO

### ESPACIALIZAÇÃO TRIDIMENSIONAL DO ARCSCENE™

Nesta etapa será utilizado o aplicativo ArcScene<sup>™</sup> para realizar uma espacialização tridimensional de uma imagem de composição colorida representativa da análise da vegetação (comp\_654) sobre uma imagem ASTER GDEM em diferentes pontos de observação.

O aplicativo ArcScene<sup>™</sup> é usado para realizar a visualização de imagens em três dimensões (3D), possibilitando a navegação e geração de animação nos formatos .avi, .mpeg e QuickTime, entre outros. Ele permite elaborar cenas realísticas nas quais você pode navegar e interagir com os dados no formato tridimensional.

- 1. Clique no botão Iniciar da barra de estado do Windows;
- 2. Clique sobre o nome Todos os Programas;
- 3. Clique sobre o nome ArcGIS;
- 4. Clique sobre o nome ArcScene 10.2.2;
- 5. Na caixa de diálogo ArcScene Getting Started, clique sobre o botão Cancel;



- 6. Clique sobre o botão Add Data 🔹 na barra de ferramentas Standard;
- 7. Clique na seta amarela 😉 e vá para o subdiretório C:\Livro\_SR\_ArcGIS\_10\_2;
- 8. Na caixa de diálogo Add Data, selecione os seguintes arquivos matriciais:
  - ASTGTM2\_S21W041\_dem.tif; e
    - Comp\_654.
- 9. Clique no botão Add;
- 10. No menu Customize, clique sobre a opção Extensions;
- 11. Na caixa de diálogo Extensions, marque a opção 3D Analyst;
- 12. Clique sobre o botão Close;
- 13. Na Tabela de Conteúdos, desmarque a imagem matricial comp-654;
- 14. Clique com o **botão esquerdo do mouse** sobre a paleta de cor do Modelo Digital de Elevação (MDE) **ASTGTM2\_S21W041\_dem.tif**;
- 15. Na caixa de diálogo **Select Color Ramp**, no dropdown da opção **Color Ramp**, selecione a paleta de cores **arco** íris (variação de cor do vermelho para o azul);
- 16. Clique sobre o botão **OK**.

| Add Data      |                       |                  |                     |
|---------------|-----------------------|------------------|---------------------|
| Look in: 🛅 L  | ivro_SR_ArcGIS_10_2   | - 🕹 🏠            | 🗟   🏥 +   🖴   🖆 🗊 🍣 |
| Exercicios    |                       | mp_543c3 🗰 cor   | 🗰 comp_6            |
| ASTGTM2_S     | 21W041_dem.tif        | 🗰 cornp_562      | 🗰 comp_6            |
| comp_432      |                       | 🗐 c 👩 _562c1     | 🗰 comp_6            |
| comp_432c1    |                       | comp_562c2       | 🗰 comp_6            |
| comp_432c2    | 2                     |                  | comp_6              |
| 🖩 comp_432c3  | 3                     | 🎟 comp_564       | 🕮 comp_6            |
| comp_543      |                       | ∰ comp_564c1     | 🗰 comp_6            |
| 🚟 comp_543c1  |                       | ∰ comp_564c2     | 🗰 comp_6            |
| 🖩 comp_543c2  | 2                     | ∰ comp_564c3     | 🗰 comp_7            |
| •             |                       |                  | Þ                   |
| Name:         | ASTGTM2_S21W041_d     | em.tif; comp_654 | 9 Add               |
| Show of type: | Scene supported Datas | ets and Layers   | ✓ Cancel            |





- 17. Dê um clique duplo sobre o nome Scene layers;
- 18. Na caixa de diálogo Scene Properties, clique na guia Coordinate System;
- 19. Após expandir a opção Layer, selecione o sistema de coordenadas WGS\_1984\_UTM\_Zone\_24S;

| Table of Contents                                                                                                                                                                                        | Scene Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table of Contents     □ ×       Scene layers     17       □ comp.654     RGB       ■ Red: comp.654c1     Green: comp.654c3       ■ Blue: comp.654c3     Blue: comp.654c3       ■ ASTGTM2_S21W041_dem.tif | Scene Properties         General       Coordinate System         Type here to search <ul> <li>Favores</li> <li>Favores</li> <li>Favores</li> <li>Forected</li> <li>Coordinate Systems</li> <li>Frojected</li> <li>Coordinate Systems</li> <li>Forected</li> <li>Coordinate Systems</li> <li>Forected</li> <li>Coordinate Systems</li> <li>Forected</li> <li>Coordinate Systems</li> <li>Forected</li> <li>Coordinate Systems</li> <li>Corrent coordinate Systems</li> <li>WGS_1984_UTM_Zone_245</li> <li>WKCS_1984_UTM_Zone_245</li> <li>WKCD: 32724 Authority: EPSG</li> <li>Projection: Transverse_Mercator</li> <li>False_Northing: 1000000.0</li> <li>Central_Mendian: -30.0</li> <li>Scale_Factor: 0.9996</li> <li>Latude_Of_Origin: 0.0</li> <li>Linear Unit: Meter (1.0)</li> </ul> | * H |
|                                                                                                                                                                                                          | OK Cancelar Aplic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ar  |

- Clique na guia General;
   No dropdown da opção Vertical Exaggeration, entre com o valor 3;
   Clique sobre o botão OK;

| Scene Properties                                                                       | ×  |
|----------------------------------------------------------------------------------------|----|
| General Coordinate System Extent Illumination                                          |    |
| Description:                                                                           |    |
|                                                                                        |    |
| 20                                                                                     |    |
| Ŧ                                                                                      |    |
| Vertical Exaggeration: 3 21 Calculate From Extent                                      |    |
| Background color: Restore Default                                                      |    |
| Use as default in all new documents                                                    |    |
| Enable Animated Rotation<br>When you use the Navigation tool to rotate the scene, hold |    |
| the scene to rotate, and release the mouse button while the scene is moving.           |    |
| 22                                                                                     |    |
| OK Cancelar Aplica                                                                     | ar |

- 23. Dê um clique duplo sobre o Modelo Digital de Elevação (MDE) ASTGTM2\_S21W041\_dem.tif;
- 24. Na caixa de diálogo Layer Properties, clique na guia Base Heights;
- 25. No dropdown da opção Floating on a custom surface, selecione o Modelo Digital de Elevação (MDE) ASTGTM2\_S21W041\_dem.tif;
- 26. Clique sobre o botão OK;

| Table of Contents 🛛 🗸                                                                                                                                             | Layer Properties                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| See 8                                                                                                                                                             | General Source Extent Display Symbology Fields Joins & Relates Base Heights Rendering                                                                                                                                                                                                                                                              |
| Scene layers<br>Growp_654<br>RGB<br>Red: comp_654c1<br>Green: comp_654c2<br>Blue: comp_654c3<br>⊡ ASTGTM2_S21W041_dem.tif<br>Value<br>High : 305<br>Low : 0<br>23 | Elevation from surfaces No elevation values from a surface:  Elevation from surface:  C:\uivro_SR_ArcGIS_10_2\ASTGTM2_S21W041_dem.tif Raster Resolution  Elevation from features No feature-based heights Use elevation values in the layer's feature Factor to convert layer elevation values to scene units: Use a constant value or expression: |
|                                                                                                                                                                   | Layer offset Add a constant elevation offset in scene units: 0                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                   | About setting base heights                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                   | 26 OK Cancelar Aplicar                                                                                                                                                                                                                                                                                                                             |

27. Clique sobre a ferramenta **Navigate** , mantenha pressionado o botão esquerdo do mouse e movimente a imagem em formato tridimensional (você poderá girar e inclinar a imagem) para a posição desejada como mostrado abaixo:

| O Untitled.sxd - ArcScene                                               |                                                                                                                  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| File Edit View Bookmarks Selection Geoprocessing Customize Windows Help |                                                                                                                  |
| ା 🗋 🚰 📇 🕼 🐘 🗴 । ୩ ୯ । 🔶 🖾 🖼 🗐 🗊 🗊 💭 🐎 🍯 🏟 🔶 🔍 🍳 🥙 🄇                     | ) 🕅 - 🖾   👠 🗐 😥   🖍 🔛 🧐 👷 💂                                                                                      |
| 🐼 comp_654 🗶 💌 🐙 🗞 🖕                                                    |                                                                                                                  |
| Table of Contents 4 ×                                                   |                                                                                                                  |
|                                                                         |                                                                                                                  |
| Scene layers 27                                                         |                                                                                                                  |
| □ □ comp_654                                                            |                                                                                                                  |
| RGB                                                                     |                                                                                                                  |
| Red: comp_654c1                                                         |                                                                                                                  |
| Green: comp_654c2                                                       |                                                                                                                  |
| Blue: comp_654c3                                                        | and the second |
| ASTGTM2_S21W041_dem.tif                                                 |                                                                                                                  |
| Value Value                                                             |                                                                                                                  |
| High : 305                                                              |                                                                                                                  |
|                                                                         |                                                                                                                  |
| Low:0                                                                   | RESULTADO                                                                                                        |
|                                                                         |                                                                                                                  |
|                                                                         |                                                                                                                  |
|                                                                         |                                                                                                                  |
|                                                                         |                                                                                                                  |

- 28. Desmarque o Modelo Digital de Elevação (MDE) ASTGTM2\_S21W041\_dem.tif;
- 29. Dê um clique duplo sobre a composição colorida comp\_654;
- 30. Na caixa de diálogo Layer Properties, clique na guia Base Heights;
- No dropdown da opção Floating on a custom surface, selecione o Modelo Digital de Elevação (MDE) ASTGTM2\_S21W041\_dem.tif;

| Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Layer Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Se 🕘 📮                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | General Source Extent Display Symbology Base Heights Rendering 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 28<br>Scene layers<br>RGB<br>Red: comp_654c1<br>Green: comp_654c2<br>Blue: comp_654c3<br>Blue: comp_654c3<br>Called High: 305<br>Low: 0<br>Called High: 305<br>Called High: 305 | General       Source       Etent       Display       Symbology       base Heights       30         Elevation from surfaces <ul> <li>No elevation values from a surface</li> <li> <li>Floating on a custom surface:</li> <li>             C:\Livro_SR_ArcGIS_10_2\ASTGTM2_S21W041_dem.tif             </li> <li>Raster Resolution</li> </li></ul> Elevation from features <ul> <li>No feature-based heights</li> <li>Use elevation values in the layer's feat</li> <li>             Use a constant value or expression:             </li></ul> <li> <ul> <li>Use a constant value or expression:</li> <li> </li> </ul> <ul> <li>Use a constant value or expression:</li> <li> </li> </ul></li> |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Layer offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Add a constant elevation offset in scene units:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OK Cancelar Aplica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |

- 32. Clique sobre a guia Symbology;
  33. No dropdown da opção Type, selecione o contraste Standard Deviations;
  34. Clique sobre o botão OK e veja o resultado;

| Draw raster as an RGB composite         itretched         GB Composite         Channel       32         Band         Image: Red       comp_654c1         Image: Red       comp_654c2         Image: Red       comp_654c3         Image: Red       comp_654c3         Image: Red       comp_654c1         Image: Red       Image: Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General Source Ext     | nt Display Symbology Base Heights Rendering                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------|
| itretched         GB Composite         Channel       32         Band         Red       comp_654c1         Green       comp_654c3         Alpha       comp_654c1         Display Background Value:(R,       0       0         Display Background Value:(R,       0       0       as         Display NoData as       -       -         Stretch       1       1       1         Stretch       1       1       1         Stretch       -       -       -         Type:       Standard Deviations       33       Histograms         n:       2.5       Invert       -         Apply Gamma Stretch:       1       1       1         Statistics       From Each Raster Dataset       -       -         Red       Green Blue       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | now:                   | Draw ractor at an PCB composite                                                                                        |
| GGB Composite       Channel       32       Band         Image: Red Comp_654c1       Image: Red Comp_654c2       Image: Red Comp_654c3       Image: Red Comp_654c1         Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1         Image: Display Background Value: (R, Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1         Image: Display Background Value: (R, Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1         Image: Display Background Value: (R, Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1         Image: Display Background Value: (R, Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1         Image: Display Background Value: (R, Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1         Image: Display Background Value: (R, Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1         Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1         Image: Red Comp_654c1       Image: Red Comp_654c1       Image: Red Comp_654c1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stretched              |                                                                                                                        |
| Channel       32       comp_654c1       Image: Comp_654c2         Image: Comp_654c2       Image: Comp_654c3       Image: Comp_654c3       Image: Comp_654c3         Image: Comp_654c1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RGB Composite          |                                                                                                                        |
| Image: Comp_654c1         Image: Comp_654c2         Image: Comp_654c2         Image: Comp_654c3         Image: Comp_654c1         Image: Comp_654c1 <t< td=""><td></td><td>Channel Band</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | Channel Band                                                                                                           |
| Image: Comp and C |                        | ☑ Red 22 comp_654c1 ▼                                                                                                  |
| Image: Stretch Type:       Stretch Type:       Stretch Type:       Stretch Type:       Stretch Type:       Image: Stretch Type:       Image: Stretch Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Green comp_654c2                                                                                                       |
| Alpha       comp_654c1         Display Background Value: (R,       0       0       as         Display NoData as       v       Display NoData as       v         Stretch       Type:       Standard Deviations       33       Histograms         n:       2.5       Invert         Apply Gamma Stretch:       1       1       1         Statistics       From Each Raster Dataset       v         Poult symbology       Red       Green       Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | ✓ Blue comp_654c3                                                                                                      |
| Display Background Value: (R, 0 0 0 as r<br>G, B)<br>Display NoData as r<br>Stretch<br>Type: Standard Deviations 33 Histograms<br>n: 2.5 Invert<br>Apply Gamma Stretch: 1 1 1<br>Statistics From Each Raster Dataset<br>Red Green Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | Alpha comp_654c1                                                                                                       |
| bout symbology Red Green Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | Display NoData as<br>Stretch<br>Type: Standard Deviations 33 Histograms<br>n: 2.5 Invert<br>Apply Gamma Stretch: 1 1 1 |
| bout symbology Red Green Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | From Each Raster Dataset                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bout symbology         | Red Green Blue                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and a fundation of the |                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | 34                                                                                                                     |


Na Figura 8 é apresentado o resultado final após edição (rotulação de nomes específicos) da espacialização tridimensional da imagem de composição colorida representativa da análise da vegetação (Comp\_654) sobre uma imagem ASTER GDEM.



- Figura 8. Espacialização tridimensional da imagem de composição colorida representativa da análise da vegetação (Comp\_654) sobre uma imagem ASTER GDEM.
- 35. No menu File, clique na opção Save as para salvar a análise 3D;
- 36. Na caixa de diálogo Save as, clique na seta amarela e vá para o subdiretório C:\Livro\_SR\_ArcGIS\_10\_2;
- 37. Digite o nome 3D\_Comp654 dentro da caixa de entrada Nome do arquivo; e
- 38. Clique no botão Salvar; e
- 39. No menu File, clique sobre a opção Exit para sair do ArcScene™;

| Salvar em:          | 📙 Livro_Si | R_ArcGIS_10_2 🝷 🗿 🧊 📴 🖪   | <b>⊡</b> ≁   🏠                        |
|---------------------|------------|---------------------------|---------------------------------------|
| (Pa)                | Nome       | A                         | Data                                  |
| ~                   | 🔒 comp_    | 132                       | 12/4/201                              |
| Locais              | 📕 comp_4   | 132c1                     | 12/4/2015                             |
|                     | 📕 comp_    | 432c2                     | 12/4/2013 1: 07                       |
|                     | 🗼 comp_    | 132c3                     | 12/4/2013 11:07                       |
| -                   | ·          | m                         | · · · · · · · · · · · · · · · · · · · |
| Area de<br>Trabalho | Nome:      | 3D_Comp654.sxd            | ✓ Salvar                              |
| 100                 | Tipo:      | ArcScene Document (* sxd) | Cancela                               |

### ESPACIALIZAÇÃO TRIDIMENSIONAL DO ARCGLOBE™

Nesta etapa será utilizado o aplicativo ArcGlobe™ para realizar uma espacialização tridimensional de uma imagem de composição colorida representativa da análise da vegetação (comp\_654) sobre uma imagem ASTER GDEM em diferentes pontos de observação.

No aplicativo ArcGlobe<sup>™</sup>, as informações espaciais são dispostas na forma tridimensional sobre a superfície do globo terrestre, exibindo seu verdadeiro local geodésico. Você pode manipular o globo, e então investigar e analisar seus dados ampliados numa região específica. Ele é bastante interativo, permitindo gerar animações nos mesmos formatos do ArcScene<sup>™</sup>.

- 1. Clique no botão Iniciar da barra de estado do Windows;
- 2. Clique sobre o nome Todos os Programas;
- 3. Clique sobre o nome ArcGIS;
- 4. Clique sobre o nome ArcGlobe 10.2.2;
- 5. Na caixa de diálogo ArcGlobe Getting Started, clique sobre o botão Cancel;

| ArcGIS 3                      | Q ArcGlobe - Getting Started    | 6                                 |                                 | ×      |
|-------------------------------|---------------------------------|-----------------------------------|---------------------------------|--------|
| ArcCatalog 10.2.1             | Open existing globe or make nev | globe using a template            |                                 |        |
| ArcGIS Administrator          | Existing Globes                 |                                   | 1000                            | *      |
| 👰 ArcGlobe 10.2.1             | Browse for more                 |                                   | 0                               |        |
| Q ArcMap 10.2.1               | New Globes                      |                                   |                                 |        |
| ArcScene 10.2.1               |                                 | 3D Mapa 01 Area Estudo Aerofoto   | 3D Mapa 02 Area Estudo Satelite |        |
| ArcGIS for Desk Help          |                                 |                                   |                                 |        |
| Desktop Tools                 |                                 | 1                                 |                                 |        |
| License Manager               |                                 | -                                 |                                 | н      |
| Python 2.7                    |                                 |                                   | <b>2</b>                        |        |
| ◀ Voltar                      |                                 | 3D Eith CC                        | 3D Eth EliC                     |        |
|                               | C:\Orientacoes\Fapes\3D_Mapa    | 01_Area_Estudo_Aerofoto.3dd       | 30 110 200                      | 5      |
| Pesauisar programas e grauivo | Default geodatabase for this g  | globe:                            | What is                         | th ?   |
|                               | C: Usen Wexanity Rosa Do        | ouments Wird STO (Die Fault, odb) |                                 | · 🖻    |
|                               | Do not show this dialog in t    | ne future.                        | Open                            | Cancel |
|                               | Do not show this dialog in the  | ne tuture.                        | Open                            | Cancel |

- 6. Clique sobre o botão Add Data 🔹 na barra de ferramentas Standard;
- 7. Clique na seta amarela 😉 e vá para o subdiretório C:\Livro\_SR\_ArcGIS\_10\_2;
- 8. Na caixa de diálogo Add Data, selecione os seguintes arquivos matriciais:
  - ASTGTM2\_S21W041\_dem.tif; e
    - Comp\_654.
- 9. Clique no botão Add;

| Add Data                              |                   | ×             |
|---------------------------------------|-------------------|---------------|
| Look in: Content Livro_SR_ArcGIS_10_2 |                   | -   🖆   🖆 🗊 🚳 |
| Exercicios                            | 🗰 comp_543c3      | 🗰 comp_6      |
| ASTGTM2_S21W041_dem.tif               | 🗰 co np_562       | 🛄 comp_6      |
| comp_432                              | <b>7</b> _562c1   | 🗰 comp_6      |
| comp_432c1                            | comp_562c2        | comp_6        |
| # comp_432c2                          |                   | comp_6        |
| comp_432c3                            | 000 comp_564      | 🗰 comp_6      |
| 000 comp_543                          |                   | comp_6        |
| 🗰 comp_543c1                          | comp_564c2        | 🗰 comp_6      |
| comp_543c2 8                          | im comp_564c3     | comp_7        |
| <                                     |                   | ۱.            |
| Name: comp_654; ASTGTM:               | 2_S21W041_dem.tif | 9 Add         |
| Show of type: Globe supported Data    | asets and Layers  | ▼ Cancel      |
|                                       |                   |               |

- Na caixa de diálogo Add Data Wizard: ASTGTM2\_S21W041\_dem.tif, clique sobre o botão Finish;
- 11. No menu Customize, clique sobre a opção Extensions;
- 12. Na caixa de diálogo Extensions, marque a opção 3D Analyst;
- 13. Clique sobre o botão Close;

| Add Data Wizard : ASTGTM2_S21                                                   | W041_dem.tif                                                                                                                                                                                                                                                                                                                                                                                 | <b>—</b> × |  |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| Add Data Wizard : ASTGTM2_S2TW041_dem.tif                                       |                                                                                                                                                                                                                                                                                                                                                                                              |            |  |  |
| Disable wizard                                                                  | Avançar > Finish                                                                                                                                                                                                                                                                                                                                                                             | Cancelar   |  |  |
| Customize W 11 ws<br>Toolbars<br>Extensions<br>Add-In Manager<br>Customize Mode | Extensions Select the extensions you want to use.          3D Analyst       12         Network Analyst       12         Spatial Analyst       12         Tracking Analyst       12         Tracking Analyst       12         Description:       3D Analyst 10.2.1         Copyright ©1999-2013 Esri Inc. All Rights Reserved       Provides tools for surface modeling and 3D visualization. |            |  |  |

- 14. Arraste o Modelo Digital de Elevação (MDE) **ASTGTM2\_S21W041\_dem.tif** para o grupo **Elevation layers** (layers de elevação);
- 15. Dê um clique duplo sobre o nome Globe layers;
- 16. Na caixa de diálogo Globe Properties, clique na guia General;
- 17. No painel Vertical Exaggeration, no dropdown da opção Of floating layers, selecione o valor 10;
- 18. Clique sobre o botão OK;



|                                                                                                                                       | Globe Properties                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                       | General Background Sun Position Transformations Description:                                                                                                                                                                |
|                                                                                                                                       | Vertical Exaggeration                                                                                                                                                                                                       |
| <ul> <li>□ Oldberlayers</li> <li>□ ○ Floating layers</li> <li>□ □ Imagery</li> <li>□ ○ Draped layers</li> <li>□ □ Comp 654</li> </ul> | Of floating layers:                                                                                                                                                                                                         |
| RGB<br>Red: comp_654c1                                                                                                                | Globe display units: Kilometers 17                                                                                                                                                                                          |
| Blue: comp_654c3<br>■ ﷺ Elevation layers<br>■ ASTGTM2_S21W041_dem.tif<br>■ Elevation (30m)<br>■ Elevation (90m/1km)                   | Enable Animated Rotation When you use the Navigation tool to rotate the globe, hold down the left mouse button, drag in the direction you want the globe to rotate, and release the mouse button while the globe is moving. |
|                                                                                                                                       | Show Globe Tips           18           Latitude & Longitude           OK           Cancelar                                                                                                                                 |

- 19. No menu Customize, clique sobre a opção ArcGlobe Options;
- 20. Na caixa de diálogo ArcGlobe Options, marque a opção Animate viewer when using tools and comands;
- 21. Clique sobre o botão OK;



| ompression                                                          | Default Layers                                                           | Metadata                                      | Tables             | Raste       |
|---------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|--------------------|-------------|
| General                                                             | Display Cache                                                            | Messages                                      | Leve               | l of Detail |
| Startup                                                             |                                                                          |                                               |                    |             |
| 🔽 Show splash                                                       | screen                                                                   |                                               |                    |             |
| 🚺 Show Gettin                                                       | g Started dialog                                                         | Starts in Casimte                             |                    |             |
| Immediately                                                         | add data                                                                 | startup script:                               |                    |             |
| Load last ma                                                        | ip on startup                                                            | esriArcMapUI.Get                              | tingStartedW       | ndow        |
| 20 aver Visib                                                       | lity                                                                     |                                               |                    |             |
| Layer visio                                                         | nty<br>- dd- dleven sidte to                                             | 1.5.1                                         |                    |             |
| Make newly                                                          | added layers visible by                                                  | default                                       |                    |             |
| Animate Tools a                                                     | nd Commands                                                              |                                               |                    |             |
| Animate viev                                                        | ver when using tools a                                                   | nd commands                                   |                    |             |
|                                                                     | Ċ.                                                                       | 6                                             |                    |             |
| Speed:                                                              | Slow                                                                     | n n n Sin n s                                 | Fast               |             |
| Full View Obsers                                                    | ver Position                                                             |                                               |                    |             |
| Latitude:                                                           |                                                                          |                                               |                    | 12          |
| 45.000                                                              |                                                                          | -                                             |                    | -           |
| 45.000                                                              |                                                                          | × August 5                                    | 53                 |             |
| Longitude:                                                          |                                                                          |                                               | VIVA               |             |
| -50.000                                                             |                                                                          |                                               |                    |             |
| Altitude:                                                           |                                                                          |                                               |                    | >           |
| 9779 787                                                            |                                                                          |                                               |                    |             |
| 5775.767                                                            |                                                                          |                                               | • here - 200 warsa | E.          |
|                                                                     | it Position                                                              | Res                                           | store Default      |             |
| Use Curren                                                          |                                                                          |                                               |                    |             |
| Use Curren                                                          |                                                                          | 10000 0000 00                                 |                    |             |
| Use Curren                                                          | lavigate Tool, and Zoo                                                   | m In/Out Tool                                 |                    |             |
| Use Curren<br>Mouse Wheel, N<br>Roll Forward / D                    | lavigate Tool, and Zoo<br>Drag Up:                                       | m In <mark>/Out Tool</mark><br>Zooms In 🛛 🙆 Z | ooms Out           |             |
| Use Currer<br>Mouse Wheel, N<br>Roll Forward / E<br>3D Graphics Toc | lavigate Tool, and Zoo<br>Drag Up:                                       | m In/Out Tool<br>Zooms In                     | ooms Out           |             |
| Use Currer<br>Mouse Wheel, N<br>Roll Forward / D<br>3D Graphics Too | lavigate Tool, and Zoo<br>Drag Up: ()<br>Dis<br>g tools active after dr. | m In/Out Tool<br>Zooms In © Z                 | ooms Out           |             |

- 22. Dê um clique duplo sobre a composição colorida comp\_654;
- 23. Na caixa de diálogo Layer Properties, clique na guia Elevation;
- 24. No dropdown da opção Floating on a custom surface, selecione o Modelo Digital de Elevação (MDE) ASTGTM2\_S21W041\_dem.tif;
- 25. Clique sobre o botão OK;
- 26. Dê um clique duplo sobre Imagery;
- 27. Na caixa de diálogo Layer Properties, clique na guia Elevation;
- 28. No dropdown da opção Floating on a custom surface, selecione Elevation (90m/1km);
- 29. Na caixa de entrada Add a constant elevation offset in meters, digite -300;
- 30. Clique sobre o botão OK;

| Table of Contents                       | □ × |
|-----------------------------------------|-----|
| 😫 🗞 📮 📮                                 |     |
| 😑 🔕 Globe layers                        |     |
| 🖃 🤜 Floating layers                     |     |
| Imagery                                 |     |
| 🖃 🍣 Draped layers 🥢 🦱                   |     |
| □ 🗹 comp_654                            | )   |
| RGB                                     |     |
| Red: comp_654c1                         |     |
| Green: comp_654c2                       |     |
| Blue: comp_654c3                        |     |
| 🖃 👋 Elevation layers                    |     |
| ASTGTM2_S21W041_dem.tif                 |     |
| <ul> <li>Elevation (30m)</li> </ul>     |     |
| <ul> <li>Elevation (90m/1km)</li> </ul> |     |
|                                         |     |
|                                         |     |
|                                         |     |
|                                         |     |
|                                         |     |

| ver Properties |                                          |             |            |              |              |             |       |            |           |
|----------------|------------------------------------------|-------------|------------|--------------|--------------|-------------|-------|------------|-----------|
| ilobe General  | Source                                   | Extent      | Display    | Symbology    | Globe Displa | y Elevation | Cache |            |           |
| This laver o   | provides (                               | elevation   | values to  | the globe su | rface        |             |       |            |           |
| Elevation fro  | om surfac                                | es          |            |              |              |             |       |            |           |
| 🔘 Draped o     | on the glo                               | be surfac   | e          |              |              |             |       |            |           |
| Floating       | without a                                | surface     |            |              |              | 23          |       |            |           |
| Floating       | on a cust                                | om surfa    | :e:        |              |              |             |       |            |           |
| ASTG           | TM2_S21                                  | W041_de     | m.tif      |              |              |             | -     | 2          |           |
| Elevation fro  | om featur                                | es          |            |              |              |             |       |            |           |
| No featu       | ire-based                                | heights     |            |              |              |             |       |            |           |
| 🕖 Use elev     | ation valu                               | ues in the  | layer      |              |              |             |       |            |           |
| Factor b       | o convert                                | t layer ele | evation va | lues to mete | rs: 6        | ustom       | 24    | 1.0000     |           |
| O Use cons     | stant valu                               | e or expr   | ession:    |              | -            |             |       |            |           |
| 0              |                                          |             |            |              |              |             | 1     | :          |           |
| Layer offset   |                                          |             |            |              |              |             |       | <b></b>    |           |
| Add a const    | ant eleva                                | ition offse | et in mete | 's:          |              | 0           |       |            |           |
|                |                                          |             |            |              |              |             | -     | -          |           |
|                |                                          |             |            |              |              |             |       | щ <u> </u> |           |
| a manually     | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 2010        |            |              |              |             | =     | 1          |           |
| About setting  | base neid                                | <u>ints</u> |            |              |              |             |       | 4          |           |
|                |                                          |             |            |              |              |             |       |            |           |
|                |                                          |             |            |              |              |             |       |            |           |
|                |                                          |             |            |              | 25           |             |       | Cancelar   | Anlicar   |
|                |                                          |             |            |              | 23           |             |       | CallCelar  | - Abiical |

|                                                                                                                                                                                                                                                          | Layer Properties                                                                                                                                                                                                                                                           | X     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                                          | Globe General Source Globe Display Elevation Cache                                                                                                                                                                                                                         |       |
|                                                                                                                                                                                                                                                          | <ul> <li>This layer provides elevation values to the globe surface</li> <li>Elevation from surfaces</li> <li>Draped on the globe surface</li> <li>Floating without a surface</li> <li>Protection of a custom surface:</li> </ul>                                           |       |
| Table of Contents                                                                                                                                                                                                                                        | Elevation (90m/1km)                                                                                                                                                                                                                                                        |       |
| <ul> <li>Globe layers</li> <li>Floating layers</li> <li>Comp_654</li> <li>RGB</li> <li>Red: comp_654c1</li> <li>Green: comp_654c2</li> <li>Blue: comp_654c3</li> <li>Draped layers</li> <li>Elevation layers</li> <li>ASTGTM2 S21W041 dem.tif</li> </ul> | Elevation from features  No feature-based heights Use elevation values in the layer Factor to convert layer elevation values to meters: Use constant value or expression:  Use constant value or expression:  Layer offset Add a constant elevation offset in meters: -300 |       |
| <ul> <li>✓ Elevation (30m)</li> <li>✓ Elevation (90m/1km)</li> </ul>                                                                                                                                                                                     | About setting base heights 29 29 29 29 29 20 29 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                     | licar |

- 31. Clique com o botão direito do mouse sobre **comp\_654** e, na janela de menu rápido, clique sobre a opção **Zoom to Layer**;
- 32. Clique sobre a ferramenta **Navigation Mode** <sup>36</sup>, mantenha pressionado o botão esquerdo do mouse e movimente a imagem em formato tridimensional (você poderá girar e inclinar a imagem) para a posição desejada como mostrado abaixo:



Na Figura 9 é apresentado o resultado final após edição (rotulação de nomes específicos) da espacialização tridimensional da imagem de composição colorida representativa da análise da vegetação (Comp\_654) sobre uma imagem ASTER GDEM em diferentes pontos de observação.



Figura 9. Espacialização tridimensional de uma imagem de composição colorida representativa da análise da vegetação (Comp\_654) sobre uma imagem ASTER GDEM em diferentes pontos de observação.

- 33. No menu File, clique na opção Save as para salvar a análise 3D;
- 34. Na caixa de diálogo **Save as**, clique na **seta amarela** e vá para o subdiretório C:\Livro\_SR\_ArcGIS\_10\_2;
- 35. Digite o nome **3D\_Comp654** dentro da caixa de entrada **Nome do arquivo**; e
- 36. Clique no botão Salvar; e
- 37. No menu File, clique sobre a opção Exit para sair do ArcGlobe™;

| Salvar em:          | 🔒 Livro_SF | R_ArcGIS_10 - 🥥 🤌  | 🖻 💷 🖌 🏠                             |
|---------------------|------------|--------------------|-------------------------------------|
| O.                  | Nome       | ~                  | Data                                |
| Nocais              | Comp_4     | 32<br>32c1<br>32c2 | 12/4/2013 11:<br>12/4/20<br>12/4/20 |
|                     | Comp_4     | 32c3 m             | 12/4/2013 11:                       |
| Área de<br>Trabalho | Nome:      | 3D_Comp654 3dd     | - Salvar                            |
| Trabalho            | Nome:      | 3D_Comp654.3dd     | Sah                                 |

## 13. UTILIZAÇÃO E VALIDAÇÃO DO SR – LANDSAT 8: CONJUNTO DE FERRAMENTAS PARA O PROCESSAMENTO DE IMAGENS ORBITAIS DO SATÉLITE LANDSAT 8

Neste tópico, todos os processamentos já realizados em lote (Batch) serão processados novamente, de maneira rápida, eficiente e dinâmica, utilizando o SR – LANDSAT 8: Conjunto de Ferramentas para Processamento de Imagens Orbitais do Satélite Landsat 8 desenvolvido pela equipe de pesquisa orientada pelo professor Dr. Alexandre Rosa dos Santos (coordenador da home-page MUNDO DA GEOMÁTICA: www.mundogeomatica.com.br).

#### **OBSERVAÇÃO**

Abaixo é apresentado como deve-se proceder a citação e referência do SR – LANDSAT 8: Conjunto de Ferramentas para Processamento de Imagens Orbitais do Satélite Landsat 8 em trabalhos futuros:

### NO TEXTO

Santos et al. (2014) ou (SANTOS et al., 2014)

### NA LISTA DE REFERÊNCIAS

SANTOS, A. R. et al. **SR – LANDSAT 8: Conjunto de Ferramentas para o Processamento de Imagens Orbitais do Satélite Landsat 8**. Desenvolvido em parceria pelos autores da UFES, UFV e INPE. Disponível em: <a href="http://www.mundogeomatica.com.br/">http://www.mundogeomatica.com.br/</a> LivroSR102.htm>.

## AQUISIÇÃO GRATUITA DO CONJUNTO DE FERRAMENTAS SR – LANDSAT 8

O conjunto de ferramentas SR – LANDSAT 8 deverá ser BAIXADA GRATUITAMENTE da home-page do MUNDO DA GEOMÁTICA que apresenta o seguinte endereço eletrônico: http://www.mundogeomatica.com.br. Nesta home-page, deve-se clicar sobre a figura do livro "Sensoriamento Remoto no ArcGIS 10.2.2 TOTAL Passo a Passo: Processamento de Imagens Orbitais –Volume 1" indo para a home-page http://www.mundogeomatica.com.br/ LivroSR102.htm. Nesta home-page:

1. Clique sobre o link intitulado CONJUNTO DE FERRAMENTAS SR - LANDSAT 8;



2. Após o download do arquivo compactado SR - LANDSAT 8.rar para seu computador, extraia o mesmo para dentro do diretório C:\Livro\_SR\_ArcGIS\_10\_2; e



3. De volta ao ArcMap, abra o projeto intitulado Processamento\_Inicial\_ Imagens\_Orbitais.mxd localizado dentro do diretório C:\Livro\_SR\_ArcGIS\_10\_2.



## PREPARAÇÃO DA BASE DE DADOS

- 1. No menu Insert, clique na opção Data Frame;
- 2. Renomeie a nova armação para Processamento com o SR LANDSAT 8;

|                                                       | Table Of Contents                                                | □ × |
|-------------------------------------------------------|------------------------------------------------------------------|-----|
| Q Processamento_Inicial_Imagens_Orbitais.mxd - ArcMap |                                                                  |     |
| File Edit View Bookmarks Insert Selection Geopr       | Processamento_Inicial_Imagens Processamento com o SR – LANDSAT 8 |     |
| 1                                                     | 2                                                                |     |

- Na armação Processamento\_Inicial\_Imagens, após selecionar os arquivos vetoriais Quadrante e Municipios\_Quadrante, clique com o botão direito do mouse sobre os mesmos e, na janela de menu rápido, clique na opção Copy;
- Após minimizar a armação Processamento\_Inicial\_Imagens, clique com o botão direito do mouse sobre armação Processamento com o SR – LANDSAT 8 e, na janela de menu rápido, clique na opção Paste Layer(s);





- 5. Clique sobre o botão Add Data 🔹 na barra de ferramentas Standard;
- 6. Clique na seta amarela 😉 e vá para o diretório C:\Livro\_SR\_ArcGIS\_10\_2;
- 7. Na caixa de diálogo Add Data, selecione os seguintes arquivos matriciais:
  - LC82150742013136LGN01\_B1.TIF;
  - LC82150742013136LGN01\_B10.TIF;
  - LC82150742013136LGN01\_B11.TIF;
  - LC82150742013136LGN01\_B2.TIF;
  - LC82150742013136LGN01\_B3.TIF;
  - LC82150742013136LGN01\_B4.TIF;
  - LC82150742013136LGN01\_B5.TIF;
  - LC82150742013136LGN01\_B6.TIF;
  - LC82150742013136LGN01\_B7.TIF;
  - LC82150742013136LGN01\_B8.TIF; e
  - LC82150742013136LGN01\_B9.TIF;
- 8. Clique no botão Add;
- Na caixa de diálogo Create pyramids for LC82150742013136LGN01\_B8.TIF (1373 x 1096) clique sobre o botão No pois, neste momento, você ainda não irá reamostrar nenhuma imagem; e

| Add Data                                                        | <b>-X</b> - |
|-----------------------------------------------------------------|-------------|
| Look in: 🔄 Home - Livro_SR_ArcGIS_10_2 🗸 🏠 🟠 🎲 📰 👻              | ei ti 😜     |
| Comp_764c2                                                      | ill oli_1   |
| comp_764c3 EC82150742013136LGN01_B3.TIF                         | ill oli_1_l |
| comp_765 LC82150742013136LGN01_B4.TIF                           | 🗰 oli_1_p   |
| comp_765c1 7 LC82150742013136LGN01_B5.TIF                       | ill oli_2   |
| comp_765c2                                                      | ill oli_2_I |
| EC82150742013136LGN01_B7.TIF                                    | 🗰 oli_2_p   |
| LC82150742013136LGN01_B1.TIF                                    | 🗰 oli_3     |
| LC82150742013136LGN01_B10.TIF                                   | 🗰 oli_3_I   |
| LC82150742013136LGN01_B11.TIF III LC82150742013136LGN01_BQA.TIF | i 🎆 oli_3_p |
|                                                                 |             |
|                                                                 | 4           |
| Name: LC82150742013136LGN01_B1.TIF; LC82150742013136L           | - Add       |
| Show of type: Datasets, Layers and Results                      | Cancel      |

| Create pyramids for LC82150742013136LGN01                                                                                                                               | _B8.TIF (1373 x 1096)                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| This raster data source does not have pyramids o<br>Pyramids allow for rapid display at varying resolut<br>Pyramid building may take a fo<br>Would you like to create p | or contains insufficient pyramids.<br>tions.<br>ew moments.<br>yyramids? |
| About pyramids Yes                                                                                                                                                      | No Cancel                                                                |
| Pyramid resampling technique                                                                                                                                            | Nearest Neighbor 👻                                                       |
| Pyramid compression type                                                                                                                                                | Default 👻                                                                |
| Compression quality                                                                                                                                                     | 75                                                                       |
| Use my choice and do not show this dialog in th                                                                                                                         | e future.                                                                |

10. Ordene (ordem crescente) as imagens matriciais;



### ADICIONANDO O CONJUNTO DE FERRAMENTAS SR - LANDSAT 8 NO ARCTOOLBOX

- 1. Clique sobre o botão **ArcToolbox** a ha barra de ferramentas **Standard**;
- Na caixa de diálogo ArcToolbox, clique com o botão direito do mouse sobre o nome ArcToolbox e, na janela de menu rápido, clique na opção Add Toolbox;



- 3. Vá para o diretório C:\Livro\_SR\_ArcGIS\_10\_2;
- 4. Selecione o conjunto de ferramentas SR LANDSAT 8;
- 5. Clique no botão Open;

| Add Toolbox   |                                        | 3 |
|---------------|----------------------------------------|---|
| Look in: 📔    | Livro_SR_ArcGIS_10_2 🔹 🏠 🗟 📓 🖬 🕶 🖆 🗊 🎕 | 9 |
| Exercicios    | SAT 8.tbx 4 3                          |   |
|               |                                        |   |
| Name:         | SR - LANDSAT 8.tbx Open                | ) |
| Show of type: | Toolboxes  Cancel                      | ] |

### **OBSERVAÇÃO**

- a) Para o correto funcionamento do conjunto de ferramentas SR LANDSAT 8, será <u>OBRIGATÓRIO</u> o preenchimento de todos os dropdowns, caixas de entrada e saída de cada ferramenta selecionada;
- b) Em casos isolados, o processamento poderá ser comprometido por:
  - Subdiretório de trabalho contido em outros subdiretórios muito distantes da unidade C ou outra unidade utilizada;
  - Nomes das imagens de saída maiores que 13 caracteres;
  - Nomes das imagens de saída com símbolo de underline (Ex: OLI\_1).
- c) O conjunto de ferramentas SR LANDSAT 8 só poderá ser aplicado para imagens provenientes do satélite LANDSAT 8.

### FERRAMENTA "1 - REPROJEÇÃO DE IMAGENS"

- 1. Expanda o conjunto de ferramentas SR LANDSAT 8;
- 2. Dê um clique duplo sobre a ferramenta 1 REPROJEÇÃO DE IMAGENS;



 Após selecionar todas as imagens matriciais já ordenadas (ordem crescente), clique com o botão esquerdo do mouse sobre as imagens arrastando-as para dentro da primeira linha do campo Imagens do Satélite LANDSAT 8 a serem Reprojetadas;



- 4. Dê um clique duplo sobre a primeira linha do campo Sistema de Coordenadas de Saída;
- Na caixa de diálogo 1 REPROJEÇÃO DE IMAGENS:1, clique sobre o botão Spatial Reference Properties I;

| 📴 1 - REPROJEÇÃO DE IMAGENS                 |                |                            |                               |              |
|---------------------------------------------|----------------|----------------------------|-------------------------------|--------------|
|                                             |                |                            |                               | _            |
| Imagens do Satélite LANDSAT 8 a serem Repro | jetadas Sister | na de Coordenadas de Saida | Imagens de Saída Reprojetadas |              |
| 1 LC82150742013136LGN01_B1.TIF              |                |                            |                               | +            |
| 2 LC82150742013136LGN01_B2.TIF              |                |                            |                               |              |
| 3 LC82150742013136LGN01_B3.TIF              |                |                            |                               | ×            |
| 4 LC82150742013136LGN01_B4.TIF              |                |                            |                               |              |
| 5 LC82150742013136LGN01_B5.TIF              |                |                            |                               | +            |
| 6 LC82150742013136LGN01_B6.TIF              |                |                            |                               |              |
| 7 LC82150742013136LGN01_B7.TIF              | VEJA O         | 4                          |                               |              |
| 8 LC82150742013136LGN01_B8.TIF              | ESULTADO       |                            |                               | *            |
| 9 LC82150742013136LGN01_B9.TIF              |                |                            |                               |              |
| 10 LC82150742013136LGN01_B10.TIF            |                |                            |                               |              |
| 11 LC82150742013136LGN01_B11.TIF            |                |                            |                               |              |
|                                             |                |                            |                               |              |
|                                             |                |                            |                               |              |
|                                             |                |                            |                               | · · ·        |
|                                             |                | ОК                         | Cancel Environments           | Show Help >> |
|                                             |                |                            |                               |              |
| N2 -                                        |                |                            | 1.21                          |              |
| 尹 1 - REPROJEÇÃO DE IN                      | AGENS:1        |                            |                               |              |
|                                             | ALCON .        |                            | *                             |              |
| Sistema de Coordenadas                      | de Saída       |                            |                               |              |
|                                             |                |                            | 5                             |              |
|                                             |                | c                          |                               |              |
|                                             |                |                            |                               |              |
|                                             | OK             | Cancel Show He             | p >>                          |              |
|                                             |                |                            |                               |              |

- 6. Na caixa de diálogo **Spatial Reference Properties**, expanda a opção **Layers** e clique sobre o sistema de referencia **WGS\_1984\_UTM\_Zone\_24S**;
- Clique sobre o botão OK;
- 8. Novamente clique sobre o botão OK;

| Y Coordinate System Z Coordinate System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|
| Type here to search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • 🍳 🔊 🗳 • 🔆 |   |
| Spatial Reference Properties         XY Coordinate System         Z Coordinate System         Image: Type here to search         Image: Type here to coordinate Systems         Image: Type here to search         I |             |   |
| WGS 1964 OTW Zone 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |   |
| Geographic Coordinate Systems     Figure 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |   |
| Coordinate Systems     Coordinate Systems     Coordinate Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |   |
| WGS_1984_UTM_zone_24N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |   |
| ⊞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |   |
| Current coordinate system:<br>WGS_1984_UTM_Zone_24S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | * |
| WKID: 32724 Authority: EPSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |   |
| Projection: Transverse_Mercator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Ξ |
| False_Easting: 500000.0<br>False_Northing: 10000000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |   |
| Central_Meridian: -39.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |   |
| Scale_Factor: 0.9996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |   |
| Linear Unit: Meter (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |   |

| 눧 1 - REPROJEÇÃO DE IMAGENS : 1 🗾 | 3      |
|-----------------------------------|--------|
| Sistema de Coordenadas de Saída   |        |
| WGS_1984_UTM_Zone_24S             |        |
|                                   | -<br>- |
| 8 OK Cancel Show Help >>          |        |

- 9. Dê um clique duplo sobre a primeira linha do campo Imagens de Saída Reprojetadas, vá para o diretório C:\Livro\_SR\_ArcGIS\_10\_2 e digite OLI\_1\_SR;
- 10. Clique com o **botão direito do mouse** sobre a primeira linha do campo **Imagens de Saída Reprojetadas** e, na janela de menu rápido, clique sobre a opção Fill;
- 11. Renomeia as saídas das novas imagens (linhas de 2 a 11) de C:\Livro\_SR\_ArcGIS\_10\_2\ OLI\_1\_SR para:

| ANTES                            | DEPOIS DE RENOMEAR                       |
|----------------------------------|------------------------------------------|
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\OLI_2_SR         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\OLI_3_SR         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\OLI_4_SR         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\OLI_5_SR         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\OLI_6_SR         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\OLI_7_SR         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\OLI_8_SR         |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\ <b>OLI_9_SR</b> |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\TIRS_10_SR       |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_SR | C:\Livro_SR_ArcGIS_10_2\TIRS_11_SR       |

- 12. Clique sobre o botão Check values 🗹 para verificação prévia do processamento das imagens;
- 13. Clique sobre o botão OK;

| i. | Imagens do Satélite LANDSAT 8 a serem Reprojetadas | Sistema de Coordenadas de Saída         | Imagens de Saída Reprojetadas    |    | - |
|----|----------------------------------------------------|-----------------------------------------|----------------------------------|----|---|
|    | LC82150742013136LGN01_B1.TIF                       | PROJCS['WGS_1984_UTM_Zone_24S',GEOGCS[' | C:\Livro_SR_ArcGIS_10_2\0LI_1_SR | 9) | - |
|    | LC82150742013136LGN01_B2.TIF                       |                                         |                                  |    |   |
|    | LC82150742013136LGN01_B3.TIF                       |                                         |                                  |    |   |
|    | LC82150742013136LGN01_B4.TIF                       |                                         |                                  |    |   |
|    | LC82150742013136LGN01_B5.TIF                       |                                         |                                  |    | 5 |
|    | LC82150742013136LGN01_B6.TIF                       |                                         |                                  |    |   |
|    | LC82150742013136LGN01_B7.TIF                       |                                         |                                  |    |   |
|    | LC82150742013136LGN01_B8.TIF                       |                                         | -                                |    | 2 |
|    | LC82150742013136LGN01_B9.TIF                       |                                         |                                  |    | - |
|    | LC82150742013136LGN01_B10.TIF                      |                                         |                                  |    | 0 |
| į, | LC82150742013136LGN01_B11.TIF                      |                                         |                                  |    |   |
|    |                                                    |                                         |                                  |    | 6 |

|                                                                        |                | - • •              |
|------------------------------------------------------------------------|----------------|--------------------|
|                                                                        |                | *                  |
| Imagens de Saída Reprojetadas<br>[° C:\Livro_SR_ArcGIS_10_2\OLI_1_SR_r | Open<br>Browse | •                  |
|                                                                        | Fill10         | $\mathbf{\hat{T}}$ |

|    | Imagens do Satélite LANDSAT 8 a serem Reprojetadas | Sistema de Coordenadas de Saída         | Imagens de Saída Reprojetadas      |
|----|----------------------------------------------------|-----------------------------------------|------------------------------------|
| 1  | LC82150742013136LGN01_B1.TIF                       | PROJCS['WGS_1984_UTM_Zone_24S',GEOGCS[' | C:\Livro_SR_ArcGIS_10_2\OLI_1_SR   |
| 2  | LC82150742013136LGN01_B2.TIF                       |                                         | C:\Livro_SR_ArcGIS_10_2\OLI_2_SR   |
| 3  | LC82150742013136LGN01_B3.TIF                       | 0                                       | C:\Livro_SR_ArcGIS_10_2\OLI_3_SR   |
| 4  | LC82150742013136LGN01_B4.TIF                       |                                         | C:\Livro_SR_ArcGIS_10_2\OLI_4_SR   |
| 5  | LC82150742013136LGN01_B5.TIF                       | <u> </u>                                | C:\Livro_SR_ArcGIS_10_2\OLI_5_SR   |
| 6  | LC82150742013136LGN01_B6.TIF                       | Q.                                      | C:\Livro_SR_ArcGIS_10_2\OLI_6_SR   |
| 7  | LC82150742013136LGN01_B7.TIF                       | Q.                                      | C:\Livro_SR_ArcGIS_10_2\OLL_7_SR   |
| 8  | LC82150742013136LGN01_B8.TIF                       | Q.                                      | C:\Livro_SR_ArcGIS_10_2\OLI_8_SR   |
| 9  | LC82150742013136LGN01_B9.TIF                       | Q.                                      | C:\Livro_SR_ArcGIS_10_2\OLI_9_SR   |
| 10 | LC82150742013136LGN01_B10.TIF                      | Q.                                      | C:\Livro_SR_ArcGIS_10_2\TIRS_10_SR |
| 11 | LC82150742013136LGN01_B11.TIF                      |                                         | C:\Livro_SR_ArcGIS_10_2\TIRS_11_SR |
|    |                                                    | 13 OK                                   | Cancel Environments Show He        |

- 14. Após selecionar as imagens matriciais descritas abaixo, clique com o botão direito do mouse sobre elas e, na janela de menu rápido, clique na opção Remove:
  - LC82150742013136LGN01\_B1.TIF;
  - LC82150742013136LGN01\_B2.TIF;
  - LC82150742013136LGN01\_B3.TIF;
  - LC82150742013136LGN01\_B4.TIF;
  - LC82150742013136LGN01\_B5.TIF;
  - LC82150742013136LGN01\_B6.TIF;
  - LC82150742013136LGN01\_B7.TIF;
  - LC82150742013136LGN01\_B8.TIF;
  - LC82150742013136LGN01\_B9.TIF;
  - LC82150742013136LGN01\_B10.TIF; e
  - LC82150742013136LGN01\_B11.TIF;



15. Ordene (ordem crescente) as novas imagens reprojetadas.



A ferramenta REPROJEÇÃO DE IMAGENS do SR – LANDSAT 8 foi VALIDADA por meio da comparação da média total dos pixels das imagens processadas em: a) lote (batch) e b) SR – LANDSAT 8 (Tabela 7).

Tabela 7. Validação da ferramenta REPROJEÇÃO DE IMAGENS do conjunto de ferramentas SR – LANDSAT 8

|                    | PROCES   | SAMENTO            |          |                       |
|--------------------|----------|--------------------|----------|-----------------------|
| LOTE (B/           | АТСН)    | SR – LANDS         | SAT 8    |                       |
| IMAGEM DE<br>SAÍDA | MÉDIA    | IMAGEM DE<br>SAÍDA | MÉDIA    | RESULTADO             |
| OLI_1              | 9337,46  | OLI_1_SR           | 9337,46  |                       |
| OLI_2              | 8636,19  | OLI_2_SR           | 8636,19  |                       |
| OLI_3              | 7995,13  | OLI_3_SR           | 7995,13  |                       |
| OLI_4              | 7319,43  | OLI_4_SR           | 7319,43  | FERRAMENTA REPROJEÇÃO |
| OLI_5              | 9991,22  | OLI_5_SR           | 9991,22  |                       |
| OLI_6              | 8542,00  | OLI_6_SR           | 8542,00  | DE IMAGENS            |
| OLI_7              | 7160,90  | OLI_7_SR           | 7160,90  | VALIDADA              |
| OLI_8              | 7676,39  | OLI_8_SR           | 7676,39  |                       |
| OLI_9              | 5019,35  | OLI_9_SR           | 5019,35  |                       |
| TIRS_10            | 27819,36 | TIRS_10_SR         | 27819,36 |                       |
| TIRS_11            | 25946,07 | TIRS_11_SR         | 25946,07 |                       |

### FERRAMENTA "2 – RADIÂNCIA ESPECTRAL NO TOPO DA ATMOSFERA"

1. Dê um clique duplo sobre a ferramenta 2 – RADIÂNCIA ESPECTRAL NO TOPO DA ATMOSFERA;



- Na caixa de diálogo 2 RADIÂNCIA ESPECTRAL NO TOPO DA ATMOSFERA, nos primeiros 11 dropdowns, relativos às Imagens de Entrada (Número Digital), selecione as seguintes imagens, consecutivamente:
  - OLI\_1\_SR;
  - OLI\_2\_SR;
  - OLI\_3\_SR;
  - OLI\_4\_SR;
  - OLI\_5\_SR;
  - OLI\_6\_SR;
  - OLI\_7\_SR;
  - OLI\_8\_SR;
  - OLI\_9\_SR;
  - TIRS\_10\_SR; e
  - TIRS\_11\_SR.

| ímagem de Entrada (Número Digital) da Banda OLI1 - Costeira / Aerosol                                           |          |   |    |    |    |
|-----------------------------------------------------------------------------------------------------------------|----------|---|----|----|----|
| OLI_1_SR                                                                                                        | •        | 6 |    | h  |    |
| (magem de Entrada (Número Digital) da Banda OLI2 - Azul                                                         |          |   |    | н  |    |
| OLI_2_SR                                                                                                        | <u> </u> | 1 |    | н  |    |
| Imagem de Entrada (Número Digital) da Banda OLI3 - Verde                                                        |          | _ |    | н  |    |
| OLI_3_SR                                                                                                        | •        | e |    | н  |    |
| Imagem de Entrada (Número Digital) da Banda OLI4 - Vermelho                                                     |          | _ |    | н  |    |
| OLI_4_SR                                                                                                        | <u>_</u> | 6 | _  | н  |    |
| imagem de Entrada (Número Digital) da Banda OLI5 - Infravermelho Próximo (Near InfraRed - NIR)                  |          | _ | -  | н  |    |
| OLI_5_SR                                                                                                        | •        | 6 |    | н  |    |
| (magem de Entrada (Número Digital) da Banda OLI6 - Infravermelho de Ondas Curtas (Short Wave InfraRed - SWIR 1) |          |   |    | н  |    |
| OLI_6_SR                                                                                                        | <u> </u> | 1 |    | lŀ | -( |
| (magem de Entrada (Número Digital) da Banda OLI7 - Infravermelho de Ondas Curtas (Short Wave InfraRed - SWIR2)  |          | _ |    | н  |    |
| OLI_7_SR                                                                                                        | •        | 2 |    | н  |    |
| (magem de Entrada (Número Digital) da Banda OLI8 - Pancromática                                                 |          | _ |    | н  |    |
| OLI_8_SR                                                                                                        | •        | 6 | Ш. | н  |    |
| Imagem de Entrada (Número Digital) da Banda OLI9 - Cirrus                                                       |          |   |    | н  |    |
| OLI_9_SR                                                                                                        | •        | 6 |    | н  |    |
| Imagem de Entrada (Número Digital) da Banda TIRS10 - Infravermelho Termal (Termal InfraRed Sensor - TIRS1)      |          |   |    |    |    |
| TIRS_10_SR                                                                                                      | •        | B |    |    |    |

- Nas primeiras 11 caixas de entrada, relativo aos valores de RADIANCE\_ADD\_BAND (fator aditivo reescalonado da radiância para a banda específica - A<sub>L</sub>), digite os valores descritos abaixo, consecutivamente:
  - RADIANCE\_ADD\_BAND\_1 = -63.09797;
  - RADIANCE\_ADD\_BAND\_2 = -64.34332;
  - RADIANCE\_ADD\_BAND\_3 = -58.91678;
  - RADIANCE\_ADD\_BAND\_4 = -49.89890;
  - RADIANCE\_ADD\_BAND\_5 = -30.27921;
  - RADIANCE\_ADD\_BAND\_6 = -7.62885;
  - RADIANCE\_ADD\_BAND\_7 = -2.48165;
  - RADIANCE\_ADD\_BAND\_8 = -56.20796;
  - RADIANCE\_ADD\_BAND\_9 = -12.44298;
  - RADIANCE\_ADD\_BAND\_10 = 0.10000; e
  - RADIANCE\_ADD\_BAND\_11 = 0.10000;



- 4. Nas primeiras **11 caixas de entrada**, relativo aos valores de **RADIANCE\_MULT\_BAND** (fator multiplicativo reescalonado da radiância para a banda específica M<sub>L</sub>) digite os valores descritos abaixo, consecutivamente:
  - RADIANCE\_MULT\_BAND\_1 = 0.012620;
  - RADIANCE\_MULT\_BAND\_2 = 0.012869;
  - RADIANCE\_MULT\_BAND\_3 = 0.011783;
  - RADIANCE\_MULT\_BAND\_4 = 0.0099798;
  - RADIANCE\_MULT\_BAND\_5 = 0.0060558;
  - RADIANCE\_MULT\_BAND\_6 = 0.0015258;
  - RADIANCE\_MULT\_BAND\_7 = 0.00049633;
  - RADIANCE\_MULT\_BAND\_8 = 0.011242;
  - RADIANCE\_MULT\_BAND\_9 = 0.0024886;
  - RADIANCE\_MULT\_BAND\_10 = 0.00033420; e
  - RADIANCE\_MULT\_BAND\_11 = 0.00033420.



- 5. Nas primeiras 11 caixas de saída, relativo às Imagens de Saída de Radiância Espectral no Topo da Atmosfera, digite os valores descritos abaixo, sempre dentro do diretório de trabalho C:\Livro\_ArcGIS\_2, consecutivamente:
  - OLI\_1\_L\_SR;
  - OLI\_2\_L\_SR;
  - OLI\_3\_L\_SR;
  - OLI\_4\_L\_SR;
  - OLI\_5\_L\_SR;
  - OLI\_6\_L\_SR;
  - OLI\_7\_L\_SR;
  - OLI\_8\_L\_SR;
  - OLI\_9\_L\_SR;
  - TIRS\_10\_L\_SR; e
  - TIRS\_11\_L\_SR.
- 6. Clique no botão OK.

| Entre com o Valor de Radiance_Mult_Band_10                                                          |           | * |
|-----------------------------------------------------------------------------------------------------|-----------|---|
|                                                                                                     | 0.0003342 |   |
| Entre com o Valor de Radiance_Mult_Band_11                                                          |           |   |
|                                                                                                     | 0.0003342 |   |
| Imagem de Saida de Radiância Espectral no Topo da Atmosfera da Banda OLI1 (W/m <sup>2</sup> sradµm) |           |   |
| C: /LIVF0_SR_AFCGIS_1U_2/OL1_1_L_SR                                                                 |           |   |
| Imagem de Saida de Radiância Espectral no Topo da Atmosfera da Banda OLI2 (W/m²sradµm)              |           |   |
| C:\LIVF0_SR_AFCGIS_10_2\OLI_2_L_SR                                                                  |           |   |
| Imagem de Saída de Radiância Espectral no Topo da Atmosfera da Banda OLI3 (W/m²sradµm)              |           |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_3_L_SR                                                                  |           |   |
| imagem de Saída de Radiância Espectral no Topo da Atmosfera da Banda OLI4 (W/m²sradµm)              |           |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_4_L_SR                                                                  |           |   |
| magem de Saída de Radiância Espectral no Topo da Atmosfera da Banda OLI5 (W/m²sradµm)               |           |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_5_L_SR                                                                  |           |   |
| imagerm de Saída de Radiância Espectral no Topo da Atmosfera da Banda OLI6 (W/m²sradµm)             |           |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_6_L_SR                                                                  |           |   |
| imagem de Saída de Radiância Espectral no Topo da Atmosfera da Banda OLI7 (W/m²sradµm)              |           |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_7_L_SR                                                                  |           | - |
| imagem de Saída de Radiância Espectral no Topo da Atmosfera da Banda OLI8 (W/m²sradµm)              |           |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_8_L_SR                                                                  |           |   |
| imagem de Saída de Radiância Espectral no Topo da Atmosfera da Banda OLI9 (W/m²sradµm)              |           |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_9_L_SR                                                                  | 6         | E |
| Imagem de Saída de Radiância Espectral no Topo da Atmosfera da Banda TIRS 10 (W/m²sradµm)           |           |   |
| C:\Livro_SR_ArcGIS_10_2\TIRS_10_L_SR                                                                |           |   |
| imagem de Saída de Radiância Espectral no Topo da Atmosfera da Banda TIRS11 (W/m²sradµm)            |           |   |
| C:\Livro_SR_ArcGIS_10_2\TIRS_11_L_SR                                                                | 6         |   |
|                                                                                                     |           |   |

7. **Ordene** (ordem crescente) as Imagens de Saída de Radiância Espectral no Topo da Atmosfera;



A ferramenta RADIÂNCIA ESPECTRAL NO TOPO DA ATMOSFERA do SR – LANDSAT 8 foi **VALIDADA** por meio da comparação da média total dos pixels das imagens processadas em: a) lote (batch) e b) SR – LANDSAT 8 (Tabela 8).

Tabela 8. Validação da ferramenta RADIÂNCIA ESPECTRAL NO TOPO DA ATMOSFERA do conjunto de ferramentas SR – LANDSAT 8

|                      | PROCESSAMENTO |                    |              |                    |  |
|----------------------|---------------|--------------------|--------------|--------------------|--|
|                      | SAT 8         | SR – LANDS         | LOTE (BATCH) |                    |  |
| RESULTADO            | MÉDIA         | IMAGEM DE<br>SAÍDA | MÉDIA        | IMAGEM<br>DE SAÍDA |  |
|                      | 54,74         | OLI_1_L_SR         | 54,74        | OLI_1_L            |  |
|                      | 46,80         | OLI_2_L_SR         | 46,80        | OLI_2_L            |  |
| FERRAMENTA RADIÂNCIA | 35,29         | OLI_3_L_SR         | 35,29        | OLI_3_L            |  |
|                      | 23,15         | OLI_4_L_SR         | 23,15        | OLI_4_L            |  |
| ESPECTRAL NO TOPO DA | 30,23         | OLI_5_L_SR         | 30,23        | OLI_5_L            |  |
| ATMOSFÉRICA          | 5.40          | OLI_6_L_SR         | 5.40         | OLI_6_L            |  |
|                      | 1,07          | OLI_7_L_SR         | 1,07         | OLI_7_L            |  |
| VALIDADA             | 30,09         | OLI_8_L_SR         | 30,09        | OLI_8_L            |  |
|                      | 0,05          | OLI_9_L_SR         | 0,05         | OLI_9_L            |  |
|                      | 9,40          | TIRS_10_L_SR       | 9,40         | TIRS_10_L          |  |
|                      | 8,77          | TIRS_11_L_SR       | 8,77         | TIRS_11_L          |  |

# FERRAMENTA "3 – REFLECTÂNCIA PLANETÁRIA CORRIGIDA NO TOPO DA ATMOSFERA"

1. Dê um clique duplo sobre a ferramenta 3 – REFLECTÂNCIA PLANETÁRIA CORRIGIDA NO TOPO DA ATMOSFERA;



- Na caixa de entrada Ângulo de Elevação Solar Local Equivalente (Sun\_Elevation) digite o valor de 41.74834737;
- Na caixa de diálogo 3 REFLECTÂNCIA PLANETÁRIA CORRIGIDA NO TOPO DA ATMOSFERA, nos primeiros 11 dropdowns, relativos às Imagens de Entrada (Número Digital), selecione as seguintes imagens, consecutivamente:
  - OLI\_1\_SR;
  - OLI\_2\_SR;
  - OLI\_3\_SR;
  - OLI\_4\_SR;
  - OLI\_5\_SR;
  - OLI\_6\_SR;
  - OLI\_7\_SR;

- OLI\_8\_SR;
- OLI\_9\_SR;
- TIRS\_10\_SR; e
- TIRS\_11\_SR.

| de Entrada (Número Digital) da Banda OLI1 - Costeira / Aerosol<br>SR<br>de Entrada (Número Digital) da Banda OLI2 - Azul<br>38 | • |   |   |          |
|--------------------------------------------------------------------------------------------------------------------------------|---|---|---|----------|
| SR<br>de Entrada (Número Digital) da Banda OLI2 - Azul                                                                         | - |   |   |          |
| de Entrada (Número Digital) da Banda OLI2 - Azul<br>SR                                                                         |   | B | - | <b>h</b> |
| SR                                                                                                                             |   |   |   | н.       |
|                                                                                                                                | • | 6 |   | н.       |
| de Entrada (Número Digital) da Banda OLI3 - Verde                                                                              |   |   |   | н.       |
| ŚR                                                                                                                             | • | 6 | E | н.       |
| de Entrada (Número Digital) da Banda OLI4 - Vermelho                                                                           |   |   |   | н.       |
| SR                                                                                                                             | - |   |   | н.       |
| de Entrada (Número Digital) da Banda OLI5 - Infravermelho Próximo (Near InfraRed - NIR)                                        |   |   |   | н.       |
| SR                                                                                                                             | • | 0 |   | н.       |
| de Entrada (Número Digital) da Banda OLI6 - Infravermelho de Ondas Curtas (Short Wave InfraRed - SWIR 1)                       |   |   |   | н.       |
| SR                                                                                                                             | - | 6 |   | IH       |
| de Entrada (Número Digital) da Banda OLI7 - Infravermelho de Ondas Curtas (Short Wave InfraRed - SWIR2)                        |   |   |   | н.       |
| SR                                                                                                                             | • |   |   | н.       |
| de Entrada (Número Digital) da Banda OLI8 - Pancromática                                                                       |   |   |   | н.       |
| \$R                                                                                                                            | • | 6 |   | н.       |
| de Entrada (Número Digital) da Banda OLI9 - Cirrus                                                                             |   |   |   | н.       |
| SR                                                                                                                             | • | 6 |   | н.       |
| de Entrada (Número Digital) da Banda TIRS10 - Infravermelho Termal (Termal InfraRed Sensor - TIRS1)                            |   | _ |   | н.       |
| J_SR                                                                                                                           | • | 0 |   | н.       |
| de Entrada (Número Digital) da Banda TIRS11 - Infravermelho Termal (Termal InfraRed Sensor - TIRS2)                            |   | _ |   | н.       |
| L_SR                                                                                                                           | • | B | _ | μ.       |
| de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI1                                               |   | _ |   |          |
|                                                                                                                                |   | e | ÷ |          |

- 4. Nas primeiras **11 caixas de saída**, relativo às **Imagens de Reflectância Planetária Corrigida no Topo da Atmosfera**, digite os valores descritos abaixo, sempre dentro do diretório de trabalho C:\Livro\_ArcGIS\_2, consecutivamente:
  - OLI\_1\_P\_SR;
  - OLI\_2\_P\_SR;
  - OLI\_3\_P\_SR;
  - OLI\_4\_P\_SR;
  - OLI\_5\_P\_SR;
  - OLI\_6\_P\_SR;
  - OLI\_7\_P\_SR;
  - OLI\_8\_P\_SR;
  - OLI\_9\_P\_SR;
  - TIRS\_10\_P\_SR; e
  - TIRS\_11\_P\_SR.

### 5. Clique no botão OK.

| imagem de Entrada (Número Digital) da Banda TIRS10 - Infravermelho Termal (Termal InfraRed Sensor - TIRS1) |              | *  |   |
|------------------------------------------------------------------------------------------------------------|--------------|----|---|
| TIRS_10_SR                                                                                                 | - 🖻          |    |   |
| Imagem de Entrada (Número Digital) da Banda TIRS11 - Infravermelho Termal (Termal InfraRed Sensor - TIRS2) |              |    |   |
| TIRS_11_SR                                                                                                 | - 6          |    |   |
| Imagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI1                    |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_1_P_SR                                                                         | - 🔁          | _  | ר |
| Imagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI2                    |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_2_P_SR                                                                         |              |    |   |
| Imagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI3                    |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_3_P_SR                                                                         | 6            |    |   |
| Imagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI4                    |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_4_P_SR                                                                         | 6            |    |   |
| Imagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI5                    |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_5_P_SR                                                                         | 6            |    |   |
| Imagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI6                    |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_6_P_SR                                                                         |              |    | Н |
| Imagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI7                    |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_7_P_SR                                                                         | 6            |    |   |
| imagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI8                    |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_8_P_SR                                                                         | B            |    |   |
| ímagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda OLI9                    |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\OLI_9_P_SR                                                                         | 6            |    |   |
| ímagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda TIRS10                  |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\TIRS_10_P_SR                                                                       | e            |    |   |
| imagem de Saída de Reflectância Planetária Corrigida no Topo da Atmosfera da banda TIRS11                  |              |    |   |
| C:\Livro_SR_ArcGIS_10_2\TIRS_11_P_SR                                                                       | - 6          |    |   |
|                                                                                                            | en ttele e e | -i |   |

6. **Ordene** (ordem crescente) as imagens de Reflectância Planetária Corrigida no Topo da Atmosfera;



A ferramenta REFLECTÂNCIA PLANETÁRIA CORRIGIDA NO TOPO DA ATMOSFERA do SR – LANDSAT 8 foi **VALIDADA** por meio da comparação da média total dos pixels das imagens processadas em: a) lote (batch) e b) SR – LANDSAT 8 (Tabela 9).

|                    | PROCES | SSAMENTO           |       |                         |
|--------------------|--------|--------------------|-------|-------------------------|
| LOTE (B            | ATCH)  | SR – LANDS         | SAT 8 |                         |
| IMAGEM<br>DE SAÍDA | MÉDIA  | IMAGEM DE<br>SAÍDA | MÉDIA | RESULTADO               |
| OLI_1_P            | 0,130  | OLI_1_P_SR         | 0,130 |                         |
| OLI_2_P            | 0,109  | OLI_2_P_SR         | 0,109 |                         |
| OLI_3_P            | 0,090  | OLI_3_P_SR         | 0,090 | FERRAMENTA REFLECTÂNCIA |
| OLI_4_P            | 0,070  | OLI_4_P_SR         | 0,070 |                         |
| OLI_5_P            | 0,150  | OLI_5_P_SR         | 0,150 | PLANETARIA CORRIGIDA NO |
| OLI_6_P            | 0,106  | OLI_6_P_SR         | 0,106 | TOPO DA ATMOSFERA       |
| OLI_7_P            | 0,065  | OLI_7_P_SR         | 0,065 |                         |
| OLI_8_P            | 0,080  | OLI_8_P_SR         | 0,080 | VALIDADA                |
| OLI_9_P            | 0,001  | OLI_9_P_SR         | 0,001 |                         |
| TIRS_10_P          | 0,686  | TIRS_10_P_SR       | 0,686 |                         |
| TIRS_11_P          | 0,629  | TIRS_11_P_SR       | 0,629 |                         |

Tabela 9. Validação da ferramenta REFLECTÂNCIA PLANETÁRIA CORRIGIDA NO TOPO DA ATMOSFERA do conjunto de ferramentas SR – LANDSAT 8

## FERRAMENTA "4 - TEMPERATURA DE BRILHO NO SENSOR"

1. Dê um clique duplo sobre a ferramenta 4 – TEMPERATURA DE BRILHO NO SENSOR;



- Na caixa de diálogo 4 TEMPERATURA DE BRILHO NO SENSOR, nas primeiras 4 caixas de entrada, relativo aos valores das Constantes Termais K1 e K2, digite os valores descritos abaixo, consecutivamente:
- K1\_CONSTANT\_BAND\_10 = 774.89;
- K1\_CONSTANT\_BAND\_11 = 480.89;
- K2\_CONSTANT\_BAND\_10 = 1321.08; e
- K2\_CONSTANT\_BAND\_11 = 1201.14.
- 3. Nos primeiros 2 dropdowns, relativo aos valores das Imagens de Entrada da Radiância Espectral no Topo da Atmosfera das Bandas 10 e 11, selecione as seguintes imagens, consecutivamente:
- TIRS\_10\_L\_SR; e
- TIRS\_11\_L\_SR.
- Nas primeiras 06 caixas de saída, relativo às Imagens de Temperatura de Brilho no Sensor, digite os valores descritos abaixo, sempre dentro do diretório de trabalho C:\Livro\_ArcGIS\_2, consecutivamente:
  - TIRS\_10\_T\_K;
  - TIRS\_11\_T\_K;
  - TIRS\_10\_T\_C;
  - TIRS\_11\_T\_C;
  - TIRS\_10\_T\_F;
  - TIRS\_11\_T\_F;
- 5. Clique no botão **OK**.

| 4 - TEMPERATURA DE BRILHO NO SENSOR                                                                      |         |
|----------------------------------------------------------------------------------------------------------|---------|
| Entre com o Valor da Constante Termal K1 da Banda 10 - TIRS1 (K1 Constant Band 10).                      | ÷       |
|                                                                                                          | 774.89  |
| Entre com o Valor da Constante Termal K1 da Banda 11 - TIRS2 (K1_Constant_Band11).                       |         |
|                                                                                                          | 480.89  |
| Entre com o Valor da Constante Termal K2 da Banda 10 - TIRS1 (K2_Constant_Band10).                       |         |
|                                                                                                          | 1321.08 |
| Entre com o Valor da Constante Termal K2 da Banda 11 - TIRS2 (K2_Constant_Band11).                       | 1704 44 |
|                                                                                                          | 1201.14 |
| Imagem de Entrada da Radiancia Espectral no Topo da Atmosfera da Banda 10 - TIRS1 (W/m <sup>2</sup> srac | μm).    |
| 11KS_10_L_SK                                                                                             |         |
| Imagem de Entrada da Radiância Espectral no Topo da Atmosfera da Banda 11 - TIRS2 (W/m <sup>2</sup> srad | dµm).   |
| TIRS_11_L_SR                                                                                             | ± 🖻     |
| Imagem de Saída da Temperatura de Brilho no Sensor da Banda 10 - TIRS1 - Kelvin (K).                     |         |
| C:\Livro_SR_ArcGIS_10_2\TIRS_10_T_K                                                                      |         |
| Imagem de Saída da Temperatura de Brilho no Sensor da Banda 11 - TIRS2 - Kelvin (K).                     |         |
| C:\Livro_SR_ArcGIS_10_2\TIRS_11_T_K                                                                      |         |
| Imagem de Saída da Temperatura de Brilho no Sensor da Banda 10 - TIRS1 - Celsius (°C).                   |         |
| C:\Livro_SR_ArcGIS_10_2\TIRS_10_T_C                                                                      |         |
| Imagem de Saída da Temperatura de Brilho no Sensor da Banda 11 - TIRS2 - Celsius (°C).                   |         |
| C:\Livro_SR_ArcGIS_10_2\TIRS_11_T_C                                                                      |         |
| Imagem de Saída da Temperatura de Brilho no Sensor da Banda 10 - TIRS1 - Fahrenheit (ºF).                |         |
| C:\Livro_SR_ArcGIS_10_2\TIRS_10_T_F                                                                      |         |
| Imagem de Saída da Temperatura de Brilho no Sensor da Banda 11 - TIRS2 - Fahrenheit (°F),                |         |
| C:\Livro_SR_ArcGIS_10_2\TIRS_11LT_F                                                                      |         |

6. Ordene (ordem crescente) as imagens de Imagens de Temperatura de Brilho no Sensor;



A ferramenta TEMPERATURA DE BRILHO NO SENSOR do SR – LANDSAT 8 foi **VALIDADA** por meio da comparação da média total dos pixels das imagens processadas em: a) lote (batch) e b) SR – LANDSAT 8 (Tabela 10).

Tabela 10. Validação da ferramenta TEMPERATURA DE BRILHO NO SENSOR do conjunto de ferramentas SR – LANDSAT 8

|                        | PROCESSAMENTO |                    |                     |                    |  |  |
|------------------------|---------------|--------------------|---------------------|--------------------|--|--|
|                        | AT 8          | SR – LANDS         | LOTE (BATCH)        |                    |  |  |
| RESULTADO              | MÉDIA         | IMAGEM DE<br>SAÍDA | MÉDIA               | IMAGEM DE<br>SAÍDA |  |  |
| FERRAMENTA TEMPERATURA | 298,57        | TIRS_10_T_K        | TRAD_TIRS_10 298,57 |                    |  |  |
| DE BRILHO NO SENSOR    | 298,61        | TIRS_11_T_K        | TRAD_TIRS_11 298,61 |                    |  |  |
|                        | 25,57         | TIRS_10_T_C        | 25,57               | TRADC_TIRS_10      |  |  |
| VALIDADA               | 25,61         | TIRS_11_T_C        | 25,61               | TRADC_TIRS_11      |  |  |

## FERRAMENTA "5 – COMPOSIÇÕES COLORIDAS DE IMAGENS"

1. Dê um clique duplo sobre a ferramenta 5 – COMPOSIÇÕES COLORIDAS DE IMAGENS;



- 2. Nos primeiros **6 dropdowns**, relativo aos valores das **Imagens de Entrada**, selecione as seguintes imagens, consecutivamente:
  - OLI\_2\_P\_SR;
  - OLI\_3\_P\_SR;
  - OLI\_4\_P\_SR;
  - OLI\_5\_P\_SR;
  - OLI\_6\_P\_SR; e
  - OLI\_7\_P\_SR;

# OBSERVAÇÃO

As imagens de entrada da ferramenta 5 – COMPOSIÇÕES COLORIDAS DE IMAGENS podem ser:

- a) Imagens de Entrada (Número Digital); e
- b) imagens de Reflectância Planetária Corrigida no Topo da Atmosfera (utilizada em nosso processamento).

- 3. Nas primeiras **10 caixas de saída**, relativo às **Composições de Saída**, digite os valores descritos abaixo, sempre dentro do diretório de trabalho **C:\Livro\_ArcGIS\_2**, consecutivamente:
  - COMP\_432\_SR;
  - COMP\_764\_SR;
  - COMP\_543\_SR;
  - COMP\_652\_SR;
  - COMP\_765\_SR;
  - COMP\_562\_SR;
  - COMP\_564\_SR;
  - COMP\_753\_SR;
  - COMP\_754\_SR; e
  - COMP\_654\_SR.
- 4. Clique no botão OK.

|                                                                                                                              |         |          | * |   |
|------------------------------------------------------------------------------------------------------------------------------|---------|----------|---|---|
| magem de Entrada OLI2 - Banda Espectral do Azul (0,45 – 0,51µm - 30m)                                                        |         |          |   |   |
| OLI_Z_P_SR                                                                                                                   |         |          |   | 1 |
| magem de Entrada OLI3 - Banda Espectral do Verde (0,53 – 0,59µm - 30m)                                                       |         |          |   |   |
| OLI3_P_SR                                                                                                                    | <u></u> |          |   |   |
| magem de Entrada OLI4 - Banda Espectral do Vermelho (0,64 – 0,67µm - 30m)                                                    |         |          |   |   |
| OLI_4_P_SR                                                                                                                   | _       |          |   |   |
| magem de Entrada OLI5 - Banda Espectral do Infravermelho Próximo (Near InfraRed - NIR) (0,85 – 0,88µm - 30m)                 |         |          |   | H |
| OLL_5_P_SR                                                                                                                   |         |          |   |   |
| magem de Entrada OLI6 - Banda Espectral do Infravermelho de Ondas Curtas (Short Wave InfraRed - SWIR 1) (1,57 – 1,65µm - 30m | )       |          |   |   |
| OLI_6_P_SR                                                                                                                   | •       | 6        |   |   |
| magem de Entrada OLI7 - Banda Espectral do Infravermelho de ondas Curtas (Short Wave InfraRed - SWIR2) (2,11 – 2,29µm - 30m) | (       |          |   |   |
| OLL_7_P_SR                                                                                                                   | •       | 6        | _ |   |
| magem de Saída - OLI4(R) OLI3(G) OLI2(B) - Composição de Cor Natural                                                         |         | _        |   |   |
| C:\Livro_SR_ArcGIS_10_2\COMP_432_SR                                                                                          |         | - 6      | - | 1 |
| magem de Saída - OLI7(R) OLI6(G) OLI4(B) - Composição de Falsa cor para Avaliação da Urbanização                             |         |          |   |   |
| C:\Livro_SR_ArcGIS_10_2\COMP_764_SR                                                                                          |         | 6        |   |   |
| magem de Saída - OLI5(R) OLI4(G) OLI3(B) - Composição de Infravermelho Colorida para Avaliação da Vegetação                  |         |          |   |   |
| C:\Livro_SR_ArcGIS_10_2\COMP_543_SR                                                                                          |         | 6        |   |   |
| magem de Saída - OLI6(R) OLI5(G) OLI2(B) - Composição para Avaliação da Agricultura                                          |         |          |   |   |
| C:\Livro_SR_ArcGIS_10_2\COMP_652_SR                                                                                          |         | 2        |   |   |
| magem de Saída - OLI7(R) OLI6(G) OLI5(B) - Composição para Avaliação da Penetração Atmosférica                               |         |          |   |   |
| C:\Livro_SR_ArcGIS_10_2\COMP_765_SR                                                                                          |         | 2        |   |   |
| magem de Saída - OLI5(R) OLI6(G) OLI2(B) - Composição para Avaliação do Vigor da Vegetação                                   |         |          |   | Н |
| C:\Livro_SR_ArcGIS_10_2\COMP_562_SR                                                                                          |         | 6        |   |   |
| magem de Saída - OLI5(R) OLI6(G) OLI4(B) - Composição para Avaliação da Terra e Água                                         |         | <u></u>  |   |   |
| C:\Livro_SR_ArcGIS_10_2\COMP_564_SR                                                                                          |         | 10       |   |   |
| magem de Saída - OLI7(R) OLI5(G) OLI3(B) - Composição para Avaliação Natural com Remoção Atmosférica                         |         | _        |   |   |
| C:\Livro_SR_ArcGIS_10_2\COMP_753_SR                                                                                          | _       | 1        |   |   |
| magem de Saída - OLI7(R) OLI5(G) OLI4(B) - Composição de Infravermelho de Ondas Curtas                                       |         |          |   |   |
| C:\Livro_SR_ArcGIS_10_2\COMP_754_SR                                                                                          |         | 10       |   |   |
| magem de Saída - OLI6(R) OLI5(G) OLI4(B) - Composição para Análise da Vegetação                                              |         |          |   |   |
| C:\Livro_SR_ArcGIS_10_2\COMP_654_SR                                                                                          |         | <b>6</b> | _ |   |
|                                                                                                                              |         |          | - |   |
|                                                                                                                              |         |          |   |   |

A ferramenta COMPOSIÇÕES COLORIDAS DE IMAGENS do SR – LANDSAT 8 foi **VALIDADA** por meio da comparação da média total dos pixels das imagens processadas em: a) lote (batch) e b) SR – LANDSAT 8 (Tabela 11).

|                                                                                              | Table Of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | □×  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                              | 8: 📮 🐟 🖳 🖂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                              | 🕀 🥩 Processamento_Inicial_Imagens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| <b>GRUPO 05</b><br>Composições coloridas de imagens                                          | □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| <b>GRUPO 04</b><br>Imagens de brilho de temperatura em<br>Kelvin, graus Celsius e Fahrenheit | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| <b>GRUPO 03</b><br>Imagens de reflectância planetária<br>corrigida no topo da atmosfera      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | III |
| <b>GRUPO 02</b><br>Imagens de radiância espectral no<br>topo da atmosfera                    | Image: Constraint of the system         Image: Constraint of the system <td></td> |     |
| <b>GRUPO 01</b><br>Imagens reprojetadas                                                      | ★       OUL_1_SR         ★       OUL_2_SR         ★       OUL_3_SR         ★       OUL_4_SR         ★       OUL_5_SR         ★       OUL_6_SR         ★       OUL_7_SR         ★       OUL_9_SR         ★       OUL_9_SR         ★       TIRS_10_SR         ★       TIRS_11_SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •   |

|                    | PROCESS | SAMENTO            |        |                        |
|--------------------|---------|--------------------|--------|------------------------|
| LOTE (B            | ATCH)   | SR – LAN           | DSAT 8 |                        |
| IMAGEM<br>DE SAÍDA | MÉDIA   | IMAGEM<br>DE SAÍDA | MÉDIA  | RESULTADO              |
| COMP_654           | 0,1064  | C_654_SR           | 0,1064 |                        |
| COMP_754           | 0,0649  | C_754_SR           | 0,0649 |                        |
| COMP_753           | 0,0649  | C_753_SR           | 0,0649 |                        |
| COMP_564           | 0,1499  | C_564_SR           | 0,1499 | FERRAMENTA COMPOSIÇÕES |
| COMP_562           | 0,1499  | C_562_SR           | 0,1499 | COLORIDAS DE IMAGENS   |
| COMP_765           | 0,0649  | C_765_SR           | 0,0649 |                        |
| COMP_652           | 0,1064  | C_652_SR           | 0,1064 | VALIDADA               |
| COMP_543           | 0,1499  | C_543_SR           | 0,1499 |                        |
| COMP_764           | 0,0649  | C_764_SR           | 0,0649 |                        |
| COMP_432           | 0,0697  | C_432_SR           | 0,0697 |                        |

Tabela 11. Validação da ferramenta COMPOSIÇÕES COLORIDAS DE IMAGENS do conjunto de ferramentas SR – LANDSAT 8

# 14. AQUISIÇÃO DE LIVROS E SOFTWARES NO SITE MUNDO DA GEOMÁTICA

É com grande satisfação que agradecemos seu interesse em ter adquirido este material bibliográfico. O propósito da equipe de pesquisa orientada pelo professor Dr. Alexandre Rosa dos Santos (coordenador da home-page **MUNDO DA GEOMÁTICA**: **www.mundogeomatica.com.br**) é desenvolver livros e softwares com o objetivo de contribuir com o desenvolvimento acadêmico e profissional dos usuários de diferentes áreas de conhecimento, reforçando suas habilidades e competências.

Continue acompanhando a home-page **MUNDO DA GEOMÁTICA** diariamente com o propósito de adquirir novos lançamentos sempre de forma **GRATUITA** e obter novos conhecimentos no universo dos Sistemas de Informações Geográficas e Sensoriamento Remoto.

# 15. EXERCÍCIO PRÁTICO DE APRENDIZAGEM

Com o intuito de aprimorar seus conhecimentos práticos, você deverá utilizar o conjunto de ferramentas SR – LANDSAT 8 e preparar um projeto intitulado **Processamento\_Inicial\_ Imagens\_Orbitais\_Vila\_Velha.mxd** contendo todas os processamentos mostrados, passo a passo, neste livro baseado nas seguintes informações:

## LOCALIZAÇÃO DOS ARQUIVOS VETORIAIS E MATRICIAIS A SEREM UTILIZADOS

C:\Livro\_SR\_ArcGIS\_10\_2\Exercicios

## NOME E LOCALIZAÇÃO DO PROJETO A SER SALVO

 $C:\Livro\_SR\_ArcGIS\_10\_2\\Exercicios\\Processamento\_Inicial\_Imagens\_Orbitais\_Vila\_Velha.mxd$ 

# 16. REFERENCIAS BIBLIOGRÁFICAS

ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE (ESRI). ArcGIS Professional GIS for the desktop, versão 10.2.2, 2014.

ERSDAC. **Earth Remote Sensing Data Analysis Center (ERSDAC)**. Disponível em <a href="http://gdem.ersdac.jspacesystems.or.jp/">http://gdem.ersdac.jspacesystems.or.jp/</a> Acesso em 22 Out. 2013.

FERRARI, J. L. Avaliação de geotecnologias para subsidiar o mapeamento do uso e cobertura da terra no Instituto Federal do Espírito Santo – Campus de Alegre. Tese (Doutorado -Produção Vegetal) – Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Ciências e Tecnologias Agropecuárias. Campos dos Goytacazes, RJ, 2012. 210 f.

LIU, W. T. **Aplicações de sensoriamento remoto**. Campo Grande, RJ, Ed UNIDERP, 2007. 865p.

RODRIGUES, T. L., DEBIASI, P., **Souza**, R. F. **Avaliação da Adequação dos Produtos Aster GDEM no Auxílio ao Mapeamento Sistemático Brasileiro**. III Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação.jul.2010.Recife-PE.p 001-005.

USGS. **United States Geological Survey (USGS)**. Disponível em <a href="http://earthexplorer.usgs.gov/">http://earthexplorer.usgs.gov/</a>> Acesso em 22 Out. 2013.
